
1. General information
1.1. Description and characteristics

The world is evolving at a breakneck pace, and we are helping it do so. To support

developers, innovators, enthusiasts, and others, we have created the Atom Black Edition product, and
provide the opportunity to use our platform to develop new products and solutions in the world of
automation or IoT. Our devices are designed with a modular architecture, giving you a possibility to
choose any peripherals you need for your research or development.

We have developed two types of controllers in this series to suit any of your needs. We

provide you with the ability to program under STM32 and ESP32 controllers, which meet the
standards of stability and reliability in today's world.

This series can be used when writing your own software, as well as to use existing solutions

popular in the world of automation and IoT (micropython, esphome.io, tasmota and others).

Our devices can be used by integrators, laboratories, startups, as well as educational

institutions to train the next generation of engineers. Atom Black Edition series controllers are
perfectly protected against overloads, erroneous connections and also have excellent protection in the
form of the case, to prevent accidental contact with electrically conductive parts.

Atom Black Edition is based on the powerful and multifunctional module Espressif ESP32-
PICO-D4.

Features of ESP32-PICO-D4:

● Based on ESP32, 32-bit Xtensa® dual-core LX6 (600 DMIPS)
● 32 Mbps Flash, 520 KB RAM, 448 KB ROM, 1 KB eFuse
● Standards 802.11 b / g / ni and Bluetooth v4.2 BR / EDR / BLE
● Placing all the necessary components inside the chip
● Interfaces GPIO, UART, SPI, SDIO, I2C, PWM, I2S, IR, ADC, DAC
● Built-in Hall and temperature sensors

This solution opens up the possibility of using Atom series controllers in already established

or new automation systems as a multifunctional I / O unit with extensive integration capabilities. The
most popular platform for implementing a "smart home", where Atom controllers can be used based
on the Espressif ESP32-PICO-D4 module - control system Таsmota.

Tasmota is a system for managing devices based on ESP8266 / ESP32 (beta) using simple

settings via a web-interface with advanced integration capabilities into home automation systems.

Detailed characteristics ESP32­­PICO­­D4

1.2. Modifications

All models of Atom controllers with proper configuration files are suitable for use in Tasmota
automation systems. The difference from the basic models is that the controller uses a board based

https://www.espressif.com/en/producttype/esp32-pico-d4
https://www.espressif.com/en/producttype/esp32-pico-d4
https://tasmota.github.io/docs/
https://www.espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf

on ESP-Pico-D4 instead of the CPU board STM32. There are also no CAN and RS-485 interfaces.
Connectors in the appropriate positions are used to program the controller with a USB cable.

Modifications with the OLED screen which can be easily adjustable in a configuration file are
available.

2. Getting started ­ firmware, settings.
2.1. Software tools to upload the firmware to the device

To work in the automation system, the controller requires configuration, which is done by

uploading to it a firmware file in *.bin format, followed by configuration via the web-interface. The
controller can be used both as a separate control device and as part of the Home Assistant
automation system using the MQTT and Tasmota integration software modules. In both of these
cases, the firmware is uploaded using the USB-interface, all further settings are easier to do through
the web-interface, using the home WiFi network.

At the software level, there are several options for downloading firmware to the controller:

● Tasmotizer - NEW flashing and firmware download tool just for Tasmota. (Windows, Linux or
Mac)

● Tasmota PyFlasher - flashing tool intended for Tasmota. (Windows or Mac)
● NodeMCU PyFlasher - easy to use GUI flasher based on esptool.py. (Windows or Mac)
● Esptool.py - the official flashing tool from Espressif. (Requires Python)
● Esptool executable - Esptool in executable form, no Python required. (Windows, Linux or

Mac)

For control and management, you can use the built-in web server, which allows you to
monitor the status of inputs and outputs and information from the sensors, and provides a simplified
interface for managing connected devices.

Incomparably more convenient and functional is the solution based on the integration of
devices with Tasmota firmware into the home automation system which, in addition to advanced
graphical interface for control and management provides data exchange between devices, to
coordinate the system as a whole.

The list of possible integrations can be found on the relevant project page

2.2. Options for connecting the device to upload the firmware

Firmware upload via USB
1. Download and install the built-in USB-UART adapter driver.
2. Connect the USB cable to the controller according to the diagram

https://github.com/tasmota/tasmotizer
https://github.com/tasmota/tasmota-pyflasher
https://github.com/marcelstoer/nodemcu-pyflasher
https://github.com/espressif/esptool
https://github.com/igrr/esptool-ck
https://tasmota.github.io/docs/Integrations/
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

3. Turn on power to the device.
4. Start the firmware upload process according to the appropriate instructions
5. Check that the controller is connected to the WiFi network.

OTA update

All the following updates of the controller connected to the home WiFi network will be done
using OTA

3. Creating a configuration of the connected devices

3.1. Inputs settings

All of the equipment from the list, with the appropriate settings in the configuration file,
presented on the pages of the Tasmota project can be connected to the inputs of the controller:

https://tasmota.github.io/docs/Getting-Started/
http://ota.tasmota.com/tasmota32/release/

https://tasmota.github.io/docs/Components/

https://tasmota.github.io/docs/Features/

input type / input number 1-2 3-6 7-8 9-12
analog input + + - -
digital input
digital output + - + +
digital interface + - + -
optocoupler mode (selected by jumper) +

Inputs

+

3.2. Outputs settings

Actuating devices that can be connected to the outputs of the controller, and their number,
can be selected depending on the model of the controller:

Hydrogen Ferrum Argon Neon Helium Carbon
Connectors for modules 8
Relay 5A 2 2 18 4 2 2
Relay 10A 8 4
Relay 16A 6
AC dimmers 3
MOSFET (DC <48V) 8

Number and type of outputs

The following interchangeable modules are available for the Atom Hydrogen Black Edition
controller: relay 5A, DC MOSFET 48V 5A, 0-10V PWM.

 Important! In the I / O configuration, the GPIO port numbering of the ESP32-PICO-D4 chip or
the MCP23017 port expansion chip is specified, not the numbering of the physical pins of the chips or
the numbering of the inputs / outputs of the controller. The table of correspondence between GPIO
ports and inputs / outputs of the controller is given in the table below:

https://tasmota.github.io/docs/Components/
https://tasmota.github.io/docs/Features/

Input # GPIO Chip Functions
1 33 ESP32 in, out, 1-wire, PWM, ADC
2 32 ESP32 in, out, 1-wire, PWM, ADC
3 36 ESP32 in, ADC
4 37 ESP32 in, ADC
5 38 ESP32 in, ADC
6 39 ESP32 in, ADC
7 26 ESP32 in, out, 1-wire, PWM
8 25 ESP32 in, out, 1-wire, PWM
9 4 MCP23008 in, out, PWM
10 5 MCP23008 in, out, PWM
11 6 MCP23008 in, out, PWM
12 7 MCP23008 in, out, PWM

Buttons
1 0 PCA9536D key
2 1 PCA9536D key
3 2 PCA9536D key
4 3 PCA9536D key

Output #
1 4 ESP32
2 9 ESP32
3 5 ESP32
4 10 ESP32
5 2 ESP32
6 22 ESP32
7 23 ESP32
8 27 ESP32
9 1 MCP23008 relay
10 0 MCP23008 relay

Green LED 3 MCP23008 Status LED
Red LED 2 MCP23008 Status LED
Internal connections
I2C SDA 21 ESP32 I2C bus
i2C SCL 19 ESP32 I2C bus

Enable Modules 18 ESP32
Changable modules activation in Atom
Hydrogen

Zero detect 34 ESP32 Zero detector
Energymeter RX 35 ESP32 Data from the HLW8032 energy meter

Correspondence of inputs / outputs with ESP32 GPIO ports

Depending on the controller model or
changeable module (see also Number

and type of outputs table)

3.2. Device addresses on the I2C bus:

Chip Type I2C address
MCP23008 I2C I/O extender 0x20
MCP23017 I2C I/O extender 0x27
PCA9536D I2C I/O extender 0x41
SSd1306 (128*64) OLED 0x3C
MAX11616 ADC 0x35
CAT24C256 EEPROM 0x50

4. Connecting the equipment

4.1. Connecting inputs.

 Connect sensors, switches and other devices to the inputs of the controller. Inputs of the
controller connectors are with spring-loaded contacts, which provide convenience and reliability of
connection of conductors with a cross section up to 1.5 mm2.

 Important: the inputs are numbered and each input has a "common" output marking (marked
with the letter "G"), which is connected to the "minus" of the power supply.

3.3V and 5V controller outputs are provided for power supply of sensors. If the system uses
sensors or actuators with a different operating voltage, use additional power supplies or the power
supply that powers the controller.

By default, all inputs with jumpers are configured in "Optocoupler" ("OP") mode. This is
necessary if switches, discrete sensors or other devices are connected to the controller, which due to
the specifics of operation, large length of the connection cable, other potentially dangerous factors
can generate voltage values exceeding 3.3V at the input of the controller. If analog sensors or a bus
with 1-wire devices are connected to the input, the input will be used in digital output mode, the inputs
must be reconfigured to direct signal mode. To do this, use a flat-blade screwdriver to remove the
front panel of the controller, remove the input display board, and switch the required jumpers on the
input board to the “Dir” position.

Example of connecting inputs:

4.2. Connecting outputs

Connect the 220V phase and neutral conductors to the "L" and "N" connectors.

Connect the devices controlled by the controller to the outputs. Each output is implemented in
the form of a 2-pin connector with screw terminals. One of the contacts is labeled "OUT". The load is
connected according to the type of output.

Example of connecting outputs:

After connecting all devices, you should check their operation. It is convenient to use input
and output indicators for this.

Input indicators - show the status of each input;

OLED display - for monitoring and adjustment, display of system parameters of the device,
information from sensors.

Output status indicator - red LED that displays the active output status of the controller;

Output type indicators - the color of its glow corresponds to the output type:

● Yellow - Triac or AC MOSFET
● Blue - DC MOSFET
● Green - Relay

5. Automation configuration

The purpose of any automation system is, obviously, the ability to configure all devices to
work according to certain rules and algorithms.

 In the Tasmota system it is possible to configure tons of such algorithms (automations) using
different devices, different logic of their work, using groups of devices and a large number of options
for relationships between devices.

Examples of automation implementation are described here:

https://tasmota.github.io/docs/Rules/

6. Additional information

6.2. Expansion of functionality

https://tasmota.github.io/docs/Rules/

At present, most of the functionality of the Atom series controllers is implemented for the Tasmota
system.

Planning to implement the following functionality:

● Using Triac and AC MOSFET interchangeable modules
● Control of current consumption at the outputs equipped with Hall sensors,
● Activate control of the controller using the buttons on the front panel of the controller
● Use of controllers in similar automation systems that support ESP32 - Tasmota and 1mSmart.

6.3. Examples of implementations of various functions

https://tasmota.github.io/docs/Tutorials/l

https://tasmota.github.io/docs/Tutorials/
https://esphome.io/guides/diy.html

