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Executive Summary 

Mobility hubs are places of transit connectivity where different travel options like walking, biking, 
bus service, and shared mobility come together. The motivation of building a mobility hub is to 

improve the accessibility, effectiveness, and efficiency of public transit by enabling multimodal 

trips, as well as to reduce private car usage, vehicle mile traveled, and carbon dioxide emissions. 
However, the main challenge in accessing the potential impacts of mobility hubs is that there is 

no consistent population travel data or ground truth data reflecting the actual usage of mobility 
hubs. On one hand, large scale travel data remains scarce, particularly for underserved and rural 

communities. On the other hand, most of the mobility hubs are at the conceptual stage and few 

have been implemented. 

This is changing with the practice of real-case mobility hubs and the availability of large-scale 

information and communication technology (ICT) data. Capital District Transportation Authority 
(CDTA) initiated the Capital Region Mobility Hubs Demonstration Project from April 2022 to June 

2024, to test out two mobility hubs, one in UAlbany Downtown Campus and one in Downtown 
Cohoes and to determine the feasibility of scaling these mobility hubs across the state. As of the 

writing of this report, December 2023, these two mobility hubs have already been implemented 

for several months, providing ground truth data of real-case mobility hub usage and the 
opportunity to conduct on-site surveys. Moreover, Replica Inc. developed a nationwide synthetic 

population dataset that includes both sociodemographic information and trip/activity details. 
According to their data quality report, sociodemographic attributes of the synthetic population 

are 95% accurate compared with census data, and the trip mode share by census tract is 90% 

accurate compared with Census Transportation Planning Products (CTPP) data. Behavioral 
models for a wide range of different population segments can be developed using this unique 

data opportunity. With the combination of real-case mobility hub usage and large-scale pre-
trained model, it is now possible to overcome the challenge of limited sample size and assess the 

broader impacts of mobility hubs, i.e., to capture hub user preference, to forecast ridership and 

vehicle miles traveled (VMT), and to measure change in consumer surplus (compensating 
variation) in the post-pilot scenario. 

This report focuses on the impact assessment of this project’s two mobility hubs. To collect 
ground truth usage data, we designed an on-site survey and received 40 useful responses from 

October to December 2023. CDTA also provided their backend data for DRIVE usage (a car share 
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service available in the mobility hub) and transit ridership to/from those hub stations. For the 

pre-trained behavioral model, we used a set of New York State mode choice models (one per 
origin-destination pair at Census block group level) developed with Replica’s data in a previous 

project. The model contains agent-specific coefficients that can be used to quantify the mode 
choice for every census block group to block group pair, segmented by age, income level, and 

employment status. This model is publicly available at https://zenodo.org/record/8113817. To 

combine the ground truth data and the mode choice model, we proposed an approach to 
estimate unique mobility hub preferences to fit to the ground truth usage. The impact was then 

measured by comparing the post-pilot deployment demand and usage of the two mobility hubs 
against a baseline prior to deployment, from the perspective of predicted mode shift, reduced 

VMT and carbon dioxide emissions, and increased expected consumer surplus (i.e., quantified 

willingness of travelers to pay for such benefits). 

We found that the mobility hubs introduced more multimodal trips (those that transfer from 

one mode to another), and we showed which current direct modes these trips drew from. In 
short, the hub in UAlbany Downtown Campus introduced 8.83 trips per day, resulting in a 

decrease of 20.37 thousand vehicle miles traveled (VMT) per year and a decrease of 8.15 metric 
tons of carbon emissions per year. The hub in Downtown Cohoes introduced 6.17 trips per day, 

resulting in a decrease of 13.16 thousand VMT per year and a decrease of 5.27 metric tons of 

carbon emissions per year. The decrease of carbon emissions is roughly equivalent to two 
household’s carbon footprints in a year. The implementation of mobility hubs brought an 

increase of utility to their potential trips, which was further transformed into monetary value by 
dividing the coefficients of trip monetary cost. We showed that the UAlbany hub brought an 

increase monetary value of $0.195/trip, and the Cohoes hub brought an increased monetary 

value of $0.319/trip. In a hypothetical scenario in which the bus service is free for trips using the 
mobility hub, we showed that there would be a further increase of bus trips (+4.93 trips/day), a 

further reduction in VMT (9.7 thousand vehicle-miles-traveled/year), a further reduction in 
carbon emission (-3.99 metric tons/year), a further increase in trip monetary value (+$0.06/trip), 

while at the cost of losing total revenue collected at the hubs (-$30.75/year). 

The key to the success of mobility hubs is finding the best site location, hub density, and 
pricing policy to encourage more travelers to use them in a broader range. For further studies, 

the calibrated model in this report is scalable to evaluate the impacts of different pricing policies 
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and pick candidate locations to deploy new mobility hubs. Additional data collected would 

further improve the accuracy of these models. Could be more specific.  
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1. Introduction 

1.1. Background 

Mobility hubs are places of transit connectivity that allow for efficient integration of multiple 
public modes (like walking, biking, bus service, and shared mobility options), enabling more 

comfortable, cost and time efficient travel than those achieved by single trip modes (Miramontes 

et al., 2017). The motivation of building a mobility hub is to improve the accessibility, 
effectiveness, and efficiency of public transit by enabling multimodal trips, as well as to reduce 

private car usage, vehicle mile traveled, and carbon dioxide emissions (Aydin, Seker and Özkan, 
2022; Ku et al., 2022). As shown in Figure 1.1, mobility hubs are strategically designed locations 

that integrate private vehicle, linear public transport, and other transportation modes. Typically 

situated at key transit points, mobility hubs serve as focal points for multimodal trip options, by 
providing real-time information displays, secure bike storage, or user-friendly interface to 

facilitate easy transfers between modes. The concept of mobility hubs aligns with the goal of 
creating more sustainable and accessible mobility services while addressing the increasing travel 

demands of diverse communities (Czarnetzki and Siek, 2023). 

 

Figure 1.1. The concept of mobility hubs (source: Arup, Future Mobility Hubs) 
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However, assessing the success or potential impacts of a mobility hub is challenging mainly 

due to two reasons. First, most of the mobility hubs are at their conceptual stage and few of them 
have been implemented. The lack of real-case usage data makes it harder to get user feedback 

and capture user preference of the mobility hubs. Second, a mobility hub entails a wide range of 
mode combinations as well as trip origin and destination pairs, while large scale travel data 

remains scarce, particularly for underserved and rural communities.  

 

Figure 1.2. Locations of the two mobility hubs 

This is changing with the practice of real-case mobility hubs and the availability of 

information and communication technology (ICT) data. Capital District Transportation Authority 
(CDTA) initiated the Capital Region Mobility Demonstration Project from April 2022 to June 2024 

to test out two mobility hubs, one in UAlbany Downtown Campus and one in Downtown Cohoes 
(see Figure 1.2), and to determine the feasibility of scaling their mobility hubs across the state. 

As of December 2023, these two mobility hubs have already been implemented for several 

months, providing an opportunity to collect onsite survey data reflecting the actual usage of 
mobility hubs. Moreover, Replica Inc. developed a nationwide synthetic population dataset that 

includes both sociodemographic information and trip/activity details. Behavioral models for a 
wide range of different population segments can be developed using this unique data 

opportunity (Ren and Chow, 2023). With the combination of real-case mobility hub usage and 

large-scale pre-trained models, it is now possible to overcome the challenge of a limited sample 
size and assess the broader impacts of mobility hubs, i.e., to capture hub user preference 

(Zuurbier, 2023), to forecast transit ridership (Wu and Liao, 2020), to calculate vehicle miles 
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traveled (VMT) (Shin, 2020), and to measure change in consumer surplus in the post-pilot 

scenario (McHardy, Reynolds and Trotter, 2023). 

 

1.2. Objectives 

This report focuses on the impact assessment of the UAlbany Downtown Campus and Downtown 

Cohoes mobility hubs. Ground truth mobility hub usage data were integrated into a mode choice 
model estimated with Replica’s synthetic population data. The impact was then measured by 

comparing the post-pilot deployment demand and usage of the two mobility hubs against a 
baseline prior to deployment, from the perspective of predicted mode shift, reduced VMT and 

carbon dioxide emission, and increased consumer surplus. Three objectives were identified.  

Objective 1: Mobility Hub Survey Design and On-site Response Collection 

The first objective was to design a mobility hub survey and collect on-site responses. Since 

the mobility hubs in UAlbany Downtown Campus and Downtown Cohoes have already been 
implemented, we had the opportunity to collect trip details using the mobility hub, including trip 

purpose, trip frequency, trip origin and destination (zip code level), trip mode before and after 

using the mobility hub, trip monetary cost, alternative transport modes without the mobility hub, 
and motivations of using the mobility hub. We also collected user information such as gender, 

age, employment status, household size, income level, car ownership, and CYCLE! membership. 
This data gave us a direct view of how travelers use the mobility hub. 

Objective 2: Calibrating Mobility Hub-related Coefficients upon the Pre-trained Model 

Till now we have collected 40 responses of the survey. These responses could serve as 
ground truth mobility hub usage data to be integrated into a large-scale pre-trained mode choice 

model, predicting mode shift brought by the mobility hub with a wide range of trip origin-
destination (OD) pairs and population segments. Therefore, the second objective was to use the 

ground truth data to re-calibrate mobility hub-related coefficients in the pre-trained model. We 
used a set of New York State mode choice models developed with Replica’s 2019 data in a 

previous project. The model contains agent-specific coefficients that could be used to quantify 

the mode choice for every census block group to block group pair, segmented by age, income 
level, and employment status. To combine the ground truth data and the mode choice model, 
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we proposed an approach to estimate unique mobility hub preferences to fit the ground truth 

usage.  

Objective 3: Impact Assessment with the Calibrated Model 

Once the mobility hub-related coefficients were calibrated, the model could then be used to 
predict travelers’ mode choice given the multimodal trip options with the mobility hubs. The 

mobility hub demonstration impact was then measured by comparing the post-pilot deployment 

demand and usage of the two mobility hubs against a baseline prior to deployment, from the 
perspective of: 

 Increased transit activity: this was measured by observing samples of mode choices in 
post-deployment among users of the mobility hubs, extrapolating that to population 
level, and comparing that to the pre-deployment baseline. 

 Reduced vehicle miles traveled (VMT): based on the modes chosen by the population, 
we approximated the VMT for all the modes combined. 

 Environmental impacts: regarding the VMT, we used EPA values1 for carbon emissions 
to assess environmental impacts. 

 Increased consumer surplus: consumer surplus is widely used in economic welfare 
measurement with discrete choice models (McConnell, 1995). We used it as one of the 
impact indicators and transform its unit into dollars per trip using the coefficient of trip 
cost.    

 

1 https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle  
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2. Overview of Literature 

2.1. Concept and Benefits of Mobility Hubs  

Mobility hubs are highly visible, safe, and accessible spaces where public, shared, and active 
travel modes are coordinated, alongside improvements to the public realm and relevant 

enhanced community facilities (Arnold et al., 2023). According to existing studies, three major 

advantages can be derived—the vitalization of public transportation, environmental benefits, 
and multimodal trip options. These three advantages are discussed below. The mobility hub is 

an effective way to promote the use of public transportation. Optimal integration between 
different types of public transit has a significant impact on the flow of cities and allows people to 

use public modes more often (Stiglic et al., 2018). Bus lines, railways, and inter-connected 

stations allow travelers to go anywhere they want (Huang et al., 2018). Therefore, when transfers 
become less inconvenient, the use of public transportation becomes more active (Bueno, 2021). 

The creation of a good transfer environment involves creating a transport hub with the 
optimization of public transport services (Miramontes et al., 2017). 

  It is possible to reduce greenhouse carbon dioxide emissions by reducing vehicle travel 

distance through the implementation of mobility hubs (Claasen, 2020). Sharing mobility is helpful 
in reducing carbon emissions. If every travel mode in the mobility hub is optimized by convenient 

and efficient transferring ways, called a boosting metabolism, it brings more environmental 
benefits (Marsden et al., 2019).  

 Mobility hubs provide multimodal trips that are not restricted to public transportation. For 
instance, one can drive their private car to the mobility hub, park the vehicle there, and take a 

bus to the final destination in which driving is inconvenient due to road congestion and lack of 

parking lots. Also, one can take a bus to the mobility hub and rent a shared bike for the last mile 
trip. The combination of driving, carpooling, biking, and public transit makes trips with the 

mobility hub more efficient, in terms of travel time or monetary cost (McHardy, Reynolds and 
Trotter, 2023).  

 To this end, the impact of mobility hub demonstration should be assessed from these three 

aspects, including:  

1) the increase of public transit ridership,  



 

 

 

 
13 

2) the reduction of private vehicle miles traveled (VMT) and carbon emission, and  
3) the increase of trip experience.  

Measurements of all these impacts depend on the prediction of travelers’ choice given different 
trip mode options with the mobility hub. 

 

2.2. Choice-based Impact Assessment Techniques 

2.2.1. Discrete Choice Models (DCMs) for Behavioral Choice 

DCMs are economic models used to analyze and predict the choices individuals make when 

presented with a set of distinct alternatives. DCMs assume individuals make choices by 
maximizing the overall utility they can expect to gain (Bowman and Ben-Akiva, 2001), and they 

have been widely used to predict travelers’ mode choices. Advanced DCMs for behavioral choice 

can be divided into two categories. The first category treats choice dimensions with a nested 
structure, in the sequence from time frames to travel modes and from mode choice to route 

choice (Horni et al., 2016; Bowman and Ben-Akiva, 2001). A basic form is the nested logit model 
(NL) while a more advanced one follows a Markov decision process (MDP) and models choices as 

dynamic DCMs (Aguirregabiria and Mira, 2010; Västberg et al., 2020). Dynamic DCMs assume 

that individual 𝑖 ∈ 𝑃 acts to maximize the utility function defined by Eq. (2.1). 

𝑈௜௝௧ = 𝑥௜௝௧𝑏௝௧ + 𝑒௜௝௧ + 𝑚௧𝐸𝑉(𝑖, 𝑗, 𝑡) , ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (2.1) 

where 𝑡 denotes the choice situation or time period. 𝑥௜௝௧ denotes a set of observed variables of 

individual 𝑖 choosing alternative 𝑗 in situation 𝑡. 𝑏௝௧ is a set of coefficients reflecting preferences. 

𝑥௜௝௧𝑏௝௧ and 𝑒௜௝௧ denotes the deterministic and random utility, which is aligned with conventional 

DCMs. 𝐸𝑉(𝑖, 𝑗, 𝑡) is the expected utility of all possible alternatives in the remainder of the day, 
usually calculated using multi-dimensional integrals or backward induction with a relatively high 

computational cost (Västberg et al., 2020). 𝑚௧ is a coefficient defining the weight of expected 
utility in choice situation 𝑡. Accordingly, the probability of individual 𝑖 choosing alternative 𝑗 in 

situation t is defined as Eq. (2.2). 
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𝑃௜௝௧ =
𝑒௫೔ೕ೟௕ೕ೟ା௘೔ೕ೟ା௠ா௏(௜,௝,௧)

∑ 𝑒
௫೔ೕᇲ೟௕ೕ೟ା௘೔ೕᇲ೟ା௠ா௏(௜,௝ᇲ,௧)

௝ᇲÎ௃

 ,    ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (2.2) 

The second category focuses on stochastic heterogeneity models, considering that 

preference may vary across different choice situations of different individuals. Up to this point, 
logit mixtures incorporating inter- and intra-individual heterogeneity are estimated with a 

maximum likelihood procedure (Becker et al., 2018; Krueger et al., 2021). For example, a mixed 
logit model (MXL) assumes that each individual 𝑖 faces a choice among 𝐽 alternatives. Then, the 

utility associated with each alternative 𝑗 = 1, … , 𝐽 for individual 𝑖 is defined as Eq. (2.3). 

𝑈௜௝ = 𝑥௜௝𝑏 + 𝑒௜௝  , ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽 (2.3) 

where 𝑥௜௝  denotes a set of observed variables of individual 𝑖  choosing alternative 𝑗. 𝑒௜௝  is the 

random utility. The vector of tastes 𝑏 is assumed to be a variate that varies across individuals 

according to 𝑔(b|W) , where 𝑔(. )  is usually the Gaussian distribution with the mean and 
covariance included in W. Accordingly, the probability of individual 𝑖  choosing alternative 𝑗 is 

defined as Eq. (2.4). 

𝑃௜௝ = න
𝑒௫೔ೕ௕

∑ 𝑒
௫೔ೕᇲ௕

௝ᇲÎ௃

𝑔(𝑏|W)𝑑𝑏 ,    ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽 (2.4) 

Despite a growing number of empirical studies, DCMs are not designed for equity analysis 
under the Big Data context (Ren and Chow, 2022). With a ubiquitous dataset, attributes from the 

whole population can be obtained instead of just from a sample (Ahas et al., 2009), and the 

individual tastes might not be normally distributed due to lacking personal information (Zhao, 
Pawlak and Polak, 2018). To this end, modelers should consider individual-specific estimations 

without complex assumptions of the conditional distribution. 

2.2.2. Machine Learning Methods for Behavioral Choice 

In recent years, there has been an emerging trend of using general-purpose machine learning 

models (MLs) to analyze individual choices (Wang et al., 2020b). General-purpose MLs for 
behavior choice have both pros and cons. The pros are that these models allow flexible 

relationships between individuals’ choices and explanatory variables, resulting in higher 
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prediction accuracy than classical DCMs (Hagenauer and Helbich, 2017; Omrani, 2015; Pulugurta 

et al., 2013). The cons are that MLs are often criticized as “black-boxes” that are sensitive to 
hyperparameters and lack interpretability for modelers to explain the behavioral mechanism 

(Liao and Poggio, 2018; Sun et al., 2019; Wang et al., 2020b). 

Besides the pros and cons widely discussed in existing studies, general-purpose machine 

learning models do not generally address the limitations of DCMs. On the one hand, similar to 

the likelihood functions in DCMs, cross-entropy-based cost functions in MLs are also inefficient 
to optimize, given a huge dataset. On the other hand, though the powerful automatic learning of 

MLs can capture complex behavior realism, it is at the cost of local irregularity and non-linearity 
of demand functions (LeCun et al., 2015; Liao and Poggio, 2018). Wang et al. (2020a) have pointed 

out the impacts of local irregularity on individual tastes. They found that the exploding and 

vanishing gradients in neural networks can result in extremely high or low sensitivities at the 
individual level that are opposite to domain knowledge. Moreover, with hundreds of parameters 

in deep learning models, it is almost infeasible to formulate the utility function, let alone generate 
demand functions and integrate them into optimization models. An innovative, domain-specific 

machine learning approach is necessary to deal with the ubiquitous datasets and build the link 
between demand and supply. 

2.2.3. Inverse Optimization (IO) for Behavioral Choice 

Inverse optimization (IO) is initially used to impute missing optimization model coefficients from 
data that represents sub-optimal solutions of that optimization problem (Ahuja and Orlin, 2001; 

Burton and Toint, 1992). Given an optimization problem, an IO can be formulated to impute its 
left-hand-side constraint parameters and feasible regions (Ghobadi and Mahmoudzadeh, 2021). 

A typical IO problem is defined as follows: for a given prior 𝑞଴  of missing coefficients and 

observed decision variables 𝑥∗, determine an updated coefficient set 𝑞 such that 𝑥∗ is optimal 
while minimizing its 𝐿ଵ norm from the prior, as shown in Eq. (2.5). 

min
௤

|𝑞଴ − 𝑞 | : 𝑥∗ = arg min {𝑞்𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} (2.5) 

where 𝐴 is the constraint matrix 𝑏 is the vector of side constraint values. 𝐴𝑥 ≤ 𝑏 are constraints 

ensuring 𝑥∗ is optimal (or the best choice). 𝐿ଵ norm from a prior is used to regularize what would 
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otherwise be an ill-posed problem with infinite solutions. Ahuja and Orlin (2001) proved that Eq. 

(3.5) can be reformulated as a linear programming (LP) problem. 

Though IO is less popular than general-purpose machine learning models, it has already been 

applied to traffic assignment, route choice, and activity scheduling problems (Chow and Recker, 
2012; Hong et al., 2017; Chow, 2018; Xu et al., 2018). For instance, Chow and Recker (2012) 

proposed a multiagent framework for IO where a sample of individuals’ trip scheduling data is 

obtained and used to infer parameters of individual activity scheduling. Xu et al. (2018) 
formulated the multiagent inverse transportation problem to estimate heterogeneous route 

preferences and proved that the IO approach could obtain heterogeneous link cost coefficients 
even when multinomial or mixed logit models would not be meaningfully estimated. Moreover, 

the potential of IO in modeling individual choice has been noticed by existing studies. Iraj and 

Terekhov (2021) emphasized the need for stochastic IO models in scenarios where constraints, 
objective, and prior parameters can be defined with domain knowledge.  

2.2.4. Consumer Surplus with Calibrated User Preference 

Consumer surplus (also called ‘measure of accessibility’) is an economic measurement of 

consumer benefits resulting from market competition, which measures the scalar summary of 
expected ‘worth’ of the set of services or products (Small and Rosen 1981). In the context of 

discrete choice model (DCM) with the assumption of utility maximization, the expected consumer 

surplus for individual 𝑛 given the choice set 𝐶௡ is defined in Eq. (2.6). 

𝐸 ൤max
௝

𝑈௝௡൨ =
1

𝛼௡
ln ෍ 𝑒௠௏ೕ೙

௝∈஼೙

+ 𝑐 (2.6) 

where 𝑉௝௡ is the utility of individual 𝑛 choosing alternative 𝑗 based on user preference estimated 

by models introduced in Section 2.2.1-2.2.3; 𝑚  is a scale factor for the utility that is usually 
assumed equals to 1; 𝛼௡ is the marginal utility of income that is usually correlated with individual 

𝑛′𝑠 taste coefficient of monetary cost; 𝑐 is an unknown constant. Due to the unknown constant, 
evaluating consumer surplus on its own Is pointless, but since 𝑐  is unique to individual, it is 

possible evaluate the change of it among scenarios. Small and Rosen (1981) proposed the 

measure of compensating variation (CV) – the amount an individual should be compensated to 
be as well off as before a policy change, which is defined in Eq. (2.7). 
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𝛥𝐶𝑉 =
1

𝛼௡
቎ln ෍ 𝑒ఓ௏ೕ೙

మ

௝∈஼೙
మ

− ln ෍ 𝑒ఓ௏ೕ೙
భ

௝∈஼೙
భ

቏ (2.7) 

where 𝑉௜௡
ଵ , 𝑉௜௡

ଶ  are utilities before and after the implementation of a policy, 𝐶௡
ଵ, 𝐶௡

ଶ are choice sets 
before and after the implementation of a policy. In this report, the policy refers to the 

deployment of two mobility hubs, 𝐶௡
ଵ  only contains single-modal trip options while 𝐶௡

ଶ  also 
contains multimodal trip options using the mobility hub. Since we do not have enough 

information for individuals’ marginal utility of income, we use a common assumption, i.e., 𝛼௡ 
equals to the coefficient of individual 𝑛’s coefficients of monetary cost. In that case, the unit of 

CV (or change of consumer surplus) should be ‘dollars/trip’. 

 

2.3. Research Gap 

Ground truth mobility hub usage data and large-scale mode choice model are complementary to 

each other. On-site survey data are limited in sample size considering the labor cost (maybe not 
feasible to build a simple DCM), which requires the support of a large-scale pre-trained model to 

make it representative for a wide range of trip OD pairs and population segment. In addition, 

most large-scale mode choice models are not designed to consider mobility hub trips (since the 
implementation of mobility hubs is one its early stage), which require real-case user preference 

data to calibrate part of the coefficients.   

However, there is a lack of an approach to integrate ground truth data into pre-trained mode 

choice models. Such an approach is similar to the zero/one shot learning for pre-trained deep 

learning models (Xian et al., 2018), and should be the key to assessing the broader impacts of 
mobility hubs. With such an approach, we captured hub user preference to forecast ridership 

and vehicle miles traveled (VMT), and then measured the change in consumer surplus 
(compensating variation) in the post-pilot scenario. 
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3. Proposed Methodology 

The scope of our methodology is shown in Figure 3.1, which contains three parts: (1) ground 
truth data collection; (2) integrating ground truth data into the pre-trained mode choice model; 

(3) impact assessment with the calibrated model. The following subsections introduce them one 

by one. 

 

Figure 3.1. Flow chart of mobility hub impact assessment 

 

3.1. Ground Truth Data Collection 

3.1.1. Questionnaire Design 

To get the real-case mobility hub usage, a questionnaire was developed to target current and 

potential users of the mobility hubs in Downtown Cohoes and UAlbany Downtown Campus. The 

content of the questionnaire consisted of two parts: 
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 Today’s trip using (or potentially using) the mobility hub, 
including trip purpose, trip frequency, trip origin and 
destination (zip code level), trip mode before/after using 
the mobility hub, trip monetary cost, alternative transport 
modes without the mobility hub, and motivations of using 
the mobility hub. 

 Personal information that helps us to identify population 
segments, including gender, age, employment status, 
household size, income level, car ownership, and CYCLE! 
membership. 

The first part contains 8 questions concerning details of a real 
(potential) trip using the mobility hub. These trip details are 

related to people’s intention to use certain means of transport 
available at the hub. For trip origin and destination, we asked 

respondents to fill the full address or fill the zip code from which 
we could get a rough location for analysis. For trip monetary cost, 

we asked respondents to fill in dollars. The rest of the questions 

were asked using multiple answer options. 

The second part of the survey contains 7 questions concerning personal information. This 

information is used to identify population segments (or user portraits) that might influence 
people’s sensitivity to travel time and cost, as well as preference to specific transport mode at 

the hub. All questions were asked using multiple answer options with an additional option of 

“prefer not to say”. For a more detailed overview of the questionnaire, please see the publicly 
available version accessible at https://nyu.qualtrics.com/jfe/form/SV_9sHTmTbDu18ORng. 

We received 40 useful responses for analysis. Most of these responses were received from 
October through December (Figure 3.2a). Among the 40 responses, 22 of them were collected in 

UAlbany Downtown Campus and 18 of them were collected in Downtown Cohoes (Figure 3.2 b). 

Using these responses, we could get the rough user profile and trip details using the mobility hub. 
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Figure 3.2. Number of responses by date and mobility hub 

Demographics of the respondents: 

 Gender: 52.4% of respondents were female, 42.9% of respondents were male, 4.7% of 
respondents preferred not to say. 

 Age: 11.9% of respondents were between 19-20, 11.9% of respondents were between 
21-24, 14.3% were between 25-34, 9.5% were between 35-44, 11.9% were between 45-
54, 16.7% were between 55-64, 14.3% were between 65-74, 2.4% were over 75, 7.1% 
preferred not to say 

 Employment status: 42.9% of respondents were working full or part time, 16.7% of 
respondents were full or part time student, 21.4% of respondents were retired, 9.5% were 
not working, and 7.1% of respondents were both working and park-time students, 2.4% 
preferred not to say. 

 Household size: 40.5% of respondents were from single-member household, 26.2% of 
respondents were from two-member household, 9.5% were from three-member 
household, 14.3% were from four-member household, 9.5% were from household with 
more than four members. 

 Household annual income: 9.5% of the respondents were less than $10K, 9.5% of the 
respondents were between $10K-$15K, 14.3% were between $15K-$25K, 4.8% were 
between $25K-$35K, 11.9% were between $35K-$50K, 9.5% were between $50K-$75K, 
4.8% were between $75K-$100K, 11.9% were more than $100K, 23.8% of respondents 
preferred not to say.  

 Car ownership: 47.6% of respondents did not have any private vehicle, 33.3% of 
respondents owned one private vehicle, 19.0% of respondents owned more than one 
private vehicles. 

 Bicycle or CYCLE! membership: 63.4% of respondents did not have bicycle or CYCLE! 
membership, 22.0% of respondents had a bicycle without CYCLE! membership, 7.3% of 
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respondents had a CYCLE! membership without a bicycle, 7.3% of respondents both had 
a bicycle and a CYCLE! membership. 

Trip details using (or potentially using the hub): 

 Motivations of using the hub:  
o To decrease my overall trave time (18 responses);  
o To decrease my overall travel cost (16 responses) 
o I wanted to incorporate exercise to my travel plans (7 response) 
o It is a more enjoyable trip (3 response) 
o My ability to plan and pay for the entire trip in one app (5 response) 
o It was an environmental choice (8 responses) 
o Other reasons (7 responses)  

 Trip purpose: 18.2% of respondents were for commuting to or from work, 25% of 
respondents were for commuting to or from school, 6.8% of respondents were for leisure 
and exercise, 34.1% of respondents were for shopping or errands, 15.9% were for other 
purpose (Figure 3.3). 

 

Figure 3.3. Number of responses by trip purpose 

 Trip frequency: 9.1% of respondents conducted such a trip for the first time, 4.5% of 
respondents conducted such a trip 1-5 days a year, 6.8% of respondents conducted such 
a trip 6-11 days a year, 13.6% respondents conducted such a trip 1-3 days a month, 36.4% 
of respondents conducted such a trip 1-3 days a week, 29.5% of respondents conducted 
such a trip 4 or more days a week (Figure 3.4). 
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Figure 3.4. Number of responses by trip frequency 

 Trip origin & destination (poor data quality): some of the respondents provided full 
addresses while others provided a place name or zip codes. 

 Primary trip mode: most of the respondents took bus before/after entering the hub, and 
we did not find a respondent using scooter or bike (might be due to sample bias) (Figure 
3.5). 

 

Figure 3.5. Number of responses by mode of the first and second trip segment 

 Trip monetary cost (poor data quality): trip monetary cost was between $0-5 with some 
blank values.  
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3.1.2. App Backend Data 

Besides the on-site survey data, CDTA also provided backend data from DRIVE (an app providing 
carpool service with a $5/hour fee). DRIVE data includes total revenue, monthly number of trips, 

rental time, and number of active members for each month. Figure 3.6 shows the monthly trip 
data provided by CDTA, which was used to estimate a general proportion of trips using the 

mobility hub and calibrate our hub-related coefficients. Note that DRIVE is not available at the 

UAlbany Downtown campus hub, so we only used the data for the Downtown Cohoes hub. 

 

Figure 3.6. Monthly number of trips using DRIVE by each month 

Moreover, CDTA also provided backend trip counts for bus and Cycle! (a bike share service). 
According to the bus trip counts, there were 267 pick-up trips per weekday and 192 drop-off trips 

per weekend at Downtown UAlbany Campus in October, and there were 234 pick-up trips per 
weekday and 220 drop-off trips per weekend at Downtown Cohoes Station in October. According 

to the Cycle! data, from September to mid-November there were 185 trips started and 130 ended 

at the UAlbany Downtown Campus hub (2.47 and 1.73 trips per day), and there were 37 trips 
started and 33 trips ended at the Downtown Cohoes hub (0.49 and 0.44 trips per day). These 

datasets were used to validate our calibration results. 
 

 

3.2. Integrating Ground Truth Data into the Pre-trained Mode Choice Model 

The key part of our methodology was the approach to integrate ground truth data into the pre-

trained mode choice model. We proposed such an approach because our survey data had limited 
sample size and missing values in some fields, which might not be feasible to estimate a simple 
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discrete choice model. Another reason is that we wanted to assess the impacts of mobility hubs 

on a broader range of trip OD pairs, which is only possible by retrieving coefficients from a pre-
trained model. We used a New York State mode choice model developed with Replica’s data in 

our previous project (publicly available at https://zenodo.org/record/8113817). The model 
contains agent-specific coefficients that can be used to quantify the mode choice for every census 

block group to block group pair, segmented by age, income level, and employment status. 

3.2.1. Initial Settings 

In the pre-trained model, six initial trip modes were considered, including private auto, transit, 

on-demand auto, biking, walking, and carpool. Four mutually exclusive population segments are 
separated, namely not-low-income population, low-income population, senior population, and 

student population. First, student population included all individuals that are full-time students. 

Then senior population included individuals whose age is no less than 65. Finally, the 
identification of not-low-income and low-income population was based on U.S. Federal Poverty 

Guidelines 2 , in which a low-income household was defined as household annual income 
bellowing a threshold given a particular household size.  

For a given agent 𝑖 (by trip OD pair and population segment), the utility of choosing the six 
initial modes is defined in Eqs. (3.1) – (3.6). 

𝑉௣௥௜௩௔௧௘_௔௨௧௢,௜ = 𝜃௔௨௧௢_௧௧,௜𝑡𝑖𝑚𝑒௜
௣௥௜௩௔௧௘_௔௨௧௢

+ 𝜃௖௢௦௧,௜𝑐𝑜𝑠𝑡௜
௣௥௜௩௔௧௘_௔௨௧௢

+ 𝑎𝑠𝑐௔௨௧௢,௜ , ∀𝑖 ∈ 𝐼 (3.1) 

𝑉௣௨௕௟௜௖_௧௥௔௡௦௜௧,௜ = 𝜃௧௥௔௡௦௜௧_௔௧,௜𝑎𝑐𝑐𝑒𝑠𝑠_𝑡௜ + 𝜃௧௥௔௡௦௜௧_௘௧,௜𝑒𝑔𝑟𝑒𝑠𝑠_𝑡௜ + 𝜃௧௥௔௡௦௜௧_௜௩௧,௜𝑖𝑛_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑡௜

+ 𝜃௧௥௔௡௦௜௧_௧௥௔௡௦,௜𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟௜ + 𝜃௖௢௦௧,௜𝑐𝑜𝑠𝑡௜ + 𝑎𝑠𝑐௧௥௔௡௦௜௧,௜ , ∀𝑖 ∈ 𝐼 
(3.2) 

𝑉௢௡_ௗ௘௠௔௡ௗ,௜ = 𝜃௔௨௧௢_௧௧,௜𝑡𝑖𝑚𝑒௜
௢௡_ௗ௘௠௔௡ௗ + 𝜃௖௢௦௧,௜𝑐𝑜𝑠𝑡௜

௢௡_ௗ௘௠௔௡ௗ + 𝑎𝑠𝑐௢௡ିௗ௘௠,௜ , ∀𝑖 ∈ 𝐼 (3.3) 

𝑉௕௜௞௜௡௚,௜ = 𝜃௡௢௡_௔௨௧௢_௧௧,௜𝑡𝑖𝑚𝑒௜
௕௜௞௜௡௚

+ 𝜃௖௢௦௧,௜𝑐𝑜𝑠𝑡௜
௕௜௞௜௡௚

+ 𝑎𝑠𝑐௕௜௞௜௡௚,௜ , ∀𝑖 ∈ 𝐼 (3.4) 

𝑉௪௔௟௞௜௡௚,௜ = 𝜃௡௢௡_௔௨௧௢_௧௧,௜𝑡𝑖𝑚𝑒௜
௪௔௟௞௜௡௚

+ 𝜃௖௢௦௧,௜𝑐𝑜𝑠𝑡௜
௪௔௟௞௜௡௚

+ 𝑎𝑠𝑐௪௔௟௞௜௡௚,௜ , ∀𝑖 ∈ 𝐼 (3.5) 

 

2 https://aspe.hhs.gov/topics/poverty-economic-mobility/poverty-guidelines/prior-hhs-poverty-guidelines-federal-
register-references/2019-poverty-guidelines  
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𝑉௖௔௥௣௢௢௟,௜ = 𝜃௔௨௧௢_௧௧,௜𝑡𝑖𝑚𝑒௜
௖௔௥௣௢௢௟

+ 𝜃௖௢௦௧,௜𝑐𝑜𝑠𝑡௜
௖௔௥௣௢௢௟

 , ∀𝑖 ∈ 𝐼 (3.6) 

where 𝑖 denotes the unique ID of an agent (composed of origin block group id, destination block 

group id, and population segment id); 𝐼 is the set of total agents; 𝑉௣௥௜௩௔௧௘_௔௨௧௢,௜, 𝑉௣௨௕௟௜௖_௧௥௔௡௦௜௧,௜, 

𝑉௢௡_ௗ௘௠௔௡ௗ,௜, 𝑉௕௜௞௜௡௚,௜, 𝑉௪௔௟௞௜௡௚,௜, 𝑉௖௔௥௣௢௢௟,௜ are utilities of trips using six initial modes; 𝑡𝑖𝑚𝑒௜
∗ and 

𝑐𝑜𝑠𝑡௜
∗  are the travel time and monetary cost of different modes; 𝑎𝑐𝑐𝑒𝑠𝑠_𝑡௜ , 𝑒𝑔𝑟𝑒𝑠𝑠_𝑡௜ , 

𝑖𝑛_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑡௜ , 𝜃௧௥௔௡௦௜௧_௡௧,௜  are the access time, egress time, in-vehicle time, and number of 

transfers for public transit. All these observed variables are from Replica’s synthetic data, and 
𝜃௔௨௧௢_௧௧,௜ , 𝜃௧௥௔௡௦௜௧_௔௧,௜ , 𝜃௧௥௔௡௦௜௧_௘௧,௜ , 𝜃௧௥௔௡௦௜௧_௜௩௧,௜ , 𝜃௧௥௔௡௦௜௧_௡௧,௜ , 𝜃௧௥௔௡௦௜௧_௧௥௔௡௦,௜ , 𝜃௖௢௦௧,௜ , 𝑎𝑠𝑐௔௨௧௢,௜ , 

𝑎𝑠𝑐௧௥௔௡௦௜௧,௜ , 𝑎𝑠𝑐௢௡ିௗ௘௠,௜ , 𝑎𝑠𝑐௕௜௞௜௡௚,௜ , 𝑎𝑠𝑐௪௔௟௞௜௡௚,௜  are 12 coefficients per OD pair of our pre-

trained model. 

Now with the demonstration of the mobility hub, there would be a new alternative set with 
all multimodal trip options using the hub (𝐶௛௨௕ ), and the utility of choosing a specific mode 

transfer at the mobility hub 𝑉௠ଵି௠ଶ,௜
௛௨௕  is defined in Eq. (3.7). Given travel time and cost, all of the 

items in Eq. (3.7) can be calculated using our pre-trained model. 

𝑉௠ଵି௠ଶ,௜
௛௨௕ = 𝑉௠ଵ,௜ + 𝑉௠ଶ,௜, ∀𝑖 ∈ 𝐼 (3.7) 

where 𝑚1 is the trip mode from the origin to the hub; 𝑚2 is the trip mode from the hub to the 

destination; 𝑚1  and 𝑚2  belongs to the choice set consisting of six initial modes. Given an 

available mode transfer with the hub, say ‘Car—Hub—Bus’, the probability of travelers in agent 
𝑖 choosing this multimodal trip option equals to the probability of choosing the alternative set 

using the hub times the probability of choosing the specific mode combination in the alternative 
set, as shown in Eq. (3.8) – (3.11). 

𝑃௜(𝑐𝑎𝑟 − 𝑏𝑢𝑠|𝐽) = 𝑃௜(ℎ𝑢𝑏|𝐽) ∗ 𝑃௜(𝑐𝑎𝑟 − 𝑏𝑢𝑠|𝐽௛௨௕), ∀𝑖 ∈ 𝐼 (3.8) 

𝑃௜(𝑐𝑎𝑟 − 𝑏𝑢𝑠|𝐽௛௨௕) =
exp (𝑉௖௔௥ି௕௨௦,௜

௛௨௕ )

∑ exp൫𝑉௠ଵି௠ଶ,௜
௛௨௕ ൯(௠ଵି௠ଶ)∈௃೓ೠ್

, ∀𝑖 ∈ 𝐼 (3.9) 

𝑃௜(ℎ𝑢𝑏|𝐽) =
exp൫𝑉௛௨௕,௜൯

∑ exp൫𝑉௝,௜൯௝∈௃

, ∀𝑖 ∈ 𝐼 (3.10) 
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𝑉௛௨௕,௜ = β ∗ In ቌ ෍ exp൫𝑉௝,௜
௛௨௕൯

௝∈௃೓ೠ್

ቍ + 𝑎𝑠𝑐௛௨௕,௜, ∀𝑖 ∈ 𝐼 (3.11) 

where 𝐽 is the upper-level alternative set including six initial modes plus one general mode with 

the hub, 𝐽௛௨௕ is the lower-level alternative set including all available multimodal trips using the 
hub. 𝑃௜(𝑐𝑎𝑟 − 𝑏𝑢𝑠|𝐽௛௨௕) denotes the probability of choosing the ‘Car—Hub—Bus’ option in  𝐽௛௨௕ 

which can be calculated using the pre-trained model coefficients. 𝑃௜(ℎ𝑢𝑏|𝐽)  denotes the 
probability of choosing the option ‘Hub’ among the upper-level alternative set, depending on 

𝑉௛௨௕,௜ that is not included in the pre-trained model. Therefore, we introduce β for the expected 

utility given 𝐽௛௨௕ and 𝑎𝑠𝑐௛௨௕,௜ for the mode specific constant of using the hub.  

To be more specific, we considered a general β and population segment-specific constants 

𝑎𝑠𝑐௛௨௕,௡௢௧௟௢௪௜௡௖௢௠௘ , 𝑎𝑠𝑐௛௨ ,௟௢௪௜௡௖௢௠௘ , 𝑎𝑠𝑐௛௨௕,௦௘௡௜௢௥, 𝑎𝑠𝑐௛௨௕,௦௧௨ௗ௘௡௧. For instance, the utility of a 

student using the hub to travel from origin block group 𝑢 to destination block group 𝑤 is defined 
in Eq. (3.12). 

𝑉௛௨ ,௨௪,௦௧௨ௗ௘௡௧ = β ∗ In ቌ ෍ exp൫𝑉௝,௨௪,௦௧௨ௗ௘௡௧
௛௨௕ ൯

௝∈௃೓ೠ್

ቍ + 𝑎𝑠𝑐௛௨௕,௦௧௨ௗ௘௡௧ (3.12) 

where agent 𝑖  is decomposed into trip OD pair and population segment, and with β  and 
𝑎𝑠𝑐௛௨௕,௦௧௨ௗ௘௡௧  the probability 𝑃௨௪,௦௧௨ௗ௘௡௧(𝑐𝑎𝑟 − 𝑏𝑢𝑠|𝐽) can be predicted. With such an initial 

setting, additional information was required as a supplementary to the pre-trained model: 

 We need to define the set of OD pairs 𝑢𝑤 that we are interested in. We assumed that 
multimodal trips with the hub would be considered only if they would not increase the 
total trip length too much. To this end, potential trips that could be impacted by the hub 
should be identified first, as well as the travel time and cost of these multimodal trips. 

 We need to calibrated five hub-related coefficients, including β , 𝑎𝑠𝑐௛௨௕,௡௢௧௟௢௪௜௡௖௢௠௘ ,

𝑎𝑠𝑐௛௨௕,௟௢௪௜௡௖௢௠௘ , 𝑎𝑠𝑐௛௨௕,௦௘௡௜௢௥, 𝑎𝑠𝑐௛௨ ,௦௧௨ௗ௘௡௧. These coefficients can only be calibrated 
with ground truth hub usage data. 

3.2.2. Step 1: Generating Potential Trips and the New Alternative Set 

The first step was to identify potential trips with multimodal trip options using the mobility hub. 

In this step, we first identified all potential trip OD pairs that might by influenced by the two 
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mobility hubs using Replica’s synthetic trip data in 2023 Quarter 2 (the latest version of data 

available). Let ‘OD’ denote the centroid distance between trip origin and destination block group, 
‘OH’ denote the centroid distance between trip origin and mobility hub block group, and ‘HD’ 

denote the centroid distance between the mobility hub and trip destination block group. An OD 
pair was identified as a potential trip OD pair if (‘OH’+’HD’<threshold * ’OD’) or (‘OH’ + ‘HD’ < ‘OD’ 

+ 1km), which means using the mobility hub should not increase the total trip length too much. 

A threshold was required for the identification, which was assumed to be 1.2 in Figure 3.7 and 
was rounded up from our survey data indicating 1.18.  

 

Figure 3.7. The identification of potential trip OD pairs 

Based on the location of the mobility hubs, we draw a 10 km buffer to include all census 
block groups as our study area, and identified potential trip OD pairs among all trips that start or 

end in these block groups. Figure 3.8 shows the study area (grey zones) and potential OD pairs 
for impact assessment. Within a 5 km buffer of the UAlbany Downtown Campus hub (zones with 

red edges), there were 98,438 residents, not-low-income population accounted for 48.60%, low-
income population accounted for 8.43%, senior population accounted for 13.55%, student 

population accounted for 29.41%. Within a 5 km buffer of the Downtown Cohoes hub (zones with 

red edges), there were 50,045 residents, not-low-income population accounted for 54.12%, low-
income population accounted for 5.91%, senior population accounted for 16.74%, student 

population accounted for 23.22%. Moreover, the mobility hub in UAlbany Downtown Campus 
had 20,511 potential trips per weekday, 11,468 potential trips per weekend, and the mobility 

hub in Downtown Cohoes had 5,470 potential trips per weekday, 5,681 potential trips per 



 

 

 

 
28 

weekend. For more details such as the proportion of trips made by each population segment and 

the mode share, please refer to Appendix A. 

 

Figure 3.8. Study area and potential trip OD pairs for impact assessment 

 We then retrieved the travel time and distance of these OD pairs from Google Direction API, 
by modes including driving, transit, biking, and walking. For each OD pair, travel time (in minutes) 

and distance (in meters) were retrieved for ‘OD’, ‘OH’, and ‘HD’. Figure 3.9 shows a sample of 
the dataset retrieved from Google Direction API. Another issue is that both Replica’s data and 

Google API do not contain trip monetary cost. To this end, we inferred the costs for each trip 
based on information such as trip mode, trip length, and trip origin & destination. Appendix B 

shows how we infer trip monetary cost. 

 

Figure 3.9. A sample dataset retrieved from Google Direction API 
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Based on the survey data we considered 16 available mode combinations at the Cohoes hub, 

and 10 available mode combinations at the UAlbany hub (since DRIVE is not available there), 
which are shown in Figure 3.10. These mode options formed a sub alternative set labeled as trips 

within the mobility hub alternative as a nested structure. 

 

 

Downtown Cohoes hub UAlbany Downtown Campus hub 

Figure 3.10. Multimodal options available at the mobility hubs 

3.2.3. Step 2: Calibrating Mobility Hub-related Coefficients with Ground Truth Data 

The second step was to calibrate hub-related coefficients for calibration. The proportion of 
potential trips using the hub is essential for calibrating hub-related coefficients. For the 

Downtown Cohoes hub, we knew: (1) there were 28 trips/month using DRIVE in October 
(according to the app backend data); (2) the proportion of trips using DRIVE was around 15% 

(according to our onsite survey), and; (3) the number of potential trips related to the hub was 

5,488 trips/day (according to a weighted weekday and weekend trips in the Step 1). Therefore, 
there should be (28/30/0.15 = 6.22) trips/day using the Downtown Cohoes hub, accounting for 

(6.22/5488 * 100% = 0.1134%) of the potential trips. Since the survey has been conducted for 
two months, the rough sample rate at the Cohoes hub was (18/6.22/60 * 100% = 4.82%), which 

make sense according to our empirical knowledge. As for the UAlbany hub, since DRIVE backend 
data was not available, we assumed the same sample rate, which results in (22/60/4.82%=7.60) 

trips/day, accounting for (7.60/17750 * 100% = 0.0428%) of the potential trips. Therefore, for 

each weekend there should be (0.0428% * 20511 = 8.82) trips using the UAlbany hub and 
(0.1134% * 5470 = 6.20) trips using the Cohoes hub. 
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We used the Nelder-Mead Simplex algorithm to calibrate coefficients in Python. The cost 

function was the squared distance between expected and predicted hub trips. The algorithm 
converged after 375 iterations and 1.6 seconds. Since the model was trained for weekdays, we 

only used weekday potential trips. The results are shown in Table 3.1. 

Table 3.1. Calibrated hub-related coefficients 

β 𝑎𝑠𝑐௛௨௕,௡௢௧௟௢௪௜௡௖௢௠௘  𝑎𝑠𝑐௛௨௕,௟௢௪௜௡௖௢௠௘  𝑎𝑠𝑐௛௨௕,௦௘௡௜௢௥ 𝑎𝑠𝑐௛௨௕,௦௧௨ௗ௘௡௧  

0.1237 -5.2682 -6.9988 -3.276 -4.7021 

Trip proportion with the hub in UAlbany Downtown Campus 
Ground truth: 0.0428%          Predicted: 0.0430% 
Trip proportion with the hub in Downtown Cohoes 
Ground truth: 0.1134%          Predicted: 0.1003% 

  

3.2.4. Results Validation 

To validate our calibration results, we selected potential trips with origins or destinations 

close to the two mobility hubs (within 1 km), predicted ridership with the calibrated model, and 

referred to bus and bike count data in Section 3.1.2. Table 3.2 shows the ground truth and 
predicted bus trips per weekday. It is noted that our initial coefficients fitted UAlbany Downtown 

Campus well but fit Downtown Cohoes poorly, which might be because our pre-trained model 
(using data in 2019) underestimated the number of bus trips. Therefore, we tweaked the mode 

specific constant of transit by adding a general value of 2.17 (to capture the increase of transit 
ridership), resulting in an adjusted prediction that was much closer to the ground truth. Though 

the model predicted fewer bus trips compared to the ground truth, the difference values were 

generally acceptable (three of them within 10%, one around 20%). The adjustment of transit 
constant brought a slight increase of predicted trips using mobility hub from 0.1003% to 0.1128%, 

which was closer to the targeted value (0.1134%).  

Table 3.2. A comparison of ground truth and predicted bus trips 

 Ground truth  Predicted Difference 

Bus pick-up trips (UAlbany)  267/weekday 213/weekday -20.2% 

Bus drop-off trips (UAlbany) 192/weekday 175/weekday -9.1% 
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Bus pick-up trips (Cohoes)  234/weekday 19/weekday -91.8% 

Bus drop-off trips (Cohoes) 220/weekday 16/weekday -92.7% 

Bus pick-up trips (Cohoes-adjusted)  234/weekday 221/weekday -5.5% 

Bus drop-off trips (Cohoes-adjusted) 220/weekday 204/weekday -7.3% 

As for bike trips, we did not have additional information to separate trips using private bikes 
and trips using CYCLE!, so we listed the ground truth trip counts using CYCLE!, predicted number 

of bike trips, and the estimated proportion of bike trips using CYCLE! (Table 3.3). It shows that 
the estimated proportion was between 3.7% to 7.8% and the proportion in UAlbany was higher 

than in Cohoes, which aligned with our empirical knowledge. 

Table 3.3. A comparison of ground truth and predicted bike trips 

 Ground truth 
(CYCLE!) 

Predicted  
(all bike trips) 

Estimated 
proportion 

Bike started trips (UAlbany)  2.47/day 42 trips/weekday 5.9% 

Bike ended trips (UAlbany) 2.73/day 33 trips/weekday 8.3% 

Bike started trips (Cohoes-adjusted)  0.49/day 13 trips/weekday 3.8% 

Bike ended trips (Cohoes-adjusted) 0.44/day 12 trips/weekday 3.7% 

 

3.3. Impact Assessment with the Calibrated Model 

Once the model has been calibrated, the impact assessment was quite straightforward. For the 

impact assessment we mainly consider four aspects:  

 Mode shift: a trip that uses a hub now was assumed to have two modes (before and after 
reaching the hub) compared to a single mode trip before. The count data was used to 
calibrate alternative specific constants for choosing a hub-based multimodal trip, and for 
the choice of the modes leading to and from the hub. We then used the updated models 
to extrapolate to a population level to quantify expected changes in ridership. 

 Reduced VMT: we retrieved the modal distances using Google Direction API for every 
motorized, non-transit option. This gave us the before and after comparison of VMT.  

 Reduced carbon emissions: we used EPA numbers to convert the VMT to average 
emissions, which was around 400 grams per private vehicle per day.  
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(https://www.epa.gov/greenvehicles/tailpipe-greenhouse-gas-emissions-typical-
passenger-vehicle) 

 Increase of consumer surplus: the increase of consumer surplus per trip with the mobility 
hub is defined in Eq. (3.13). The coefficient of trip cost was used to transfer consumer 
surplus into dollars per trip. 

𝜃௖௢௦௧,௜ ൮In ቌ෍ exp൫𝑉௝,௜൯

௝∈௃

ቍ − ቌ ෍ exp൫𝑉௝,௜൯

௝∈௃,௝ ௡௢௧ ௜௡ ௃೓ೠ್

ቍ൲ , ∀𝑖 ∈ 𝐼 (3.13) 
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4. Mobility Hub Impact Assessment 

We separated the impacts of the UAlbany Downtown Campus and Downtown Cohoes hubs by 
assuming they did not influence each other given their distant locations. We focused on the 

potential trips identified in Section 3.2.2, which was further separated into direct trips (trips using 
one of the initial modes) and multimodal trips (trips using one of the mode transfers in the 

mobility hub). Mode shift, VMT and carbon emissions, and change of consumer surplus were 

predicted using our calibrated model. Moreover, we extended our discussion from consumer 
surplus to broader application scenarios of our methodology.   

 

4.1. Impacts on Mode Shift 

4.1.1. The Mobility Hub in UAlbany Downtown Campus 

Table 4.1 shows the predicted mode shift of potential trips after the demonstration of the 

mobility hub in UAlbany Downtown Campus. In general, 0.043% of the potential trips were 
multimodal trips with a mode transfer in the mobility hub, resulting in 8.83 trips/weekday. Most 

of these trips were shifted from direct trips using private auto (5.94 trips/day). As for these 
multimodal trips, we split the mode combination (e.g., a ‘Car—Hub—Bus’ trip accounts for two 

half trips, one with private auto and another with public transit) and calculated the mode share. 

The results shows that 53.50% of them used bus, 19.47% of them used private car, 17.89% of 
them used bike or CYCLE!, and 9.14% of them chose to walk. The increase of bus ridership was 

4.72 - 0.27 = 4.45 trips/day.  

Table 4.1. Impacts on the mode shift of potential trips (UAlbany Downtown Campus) 

 Trips/day 
(before) 

Trips/day 
(after) 

Trips/day 
(changed) 

Proportion 
(before) 

Proportion 
(after) 

Proportion 
(changed) 

Direct trips without using the mobility hub 

Private_auto 13,798 13,792 -5.94 67.27% 67.24% -0.0491% 

Transit 634.8 634.5 -0.27 3.10% 3.09% -0.0023% 

On_demand_auto 481.6 481.3 -0.21 2.35% 2.35% -0.0017% 

Biking 151.0 150.9 -0.06 0.74% 0.74% -0.0005% 
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Walking 1,785.5 1,784.3 -0.77 8.71% 8.70% -0.0064% 

Carpool 3,660.0 3,658.6 -1.57 17.84% 17.84% -0.0130% 

Total 20,511 20,502 8.83 100% 99.95% -0.0043% 

Multimodal trips using the mobility hub 

Bus (Transit) -- 4.72 -- -- 53.50% -- 

Car (Private_auto) -- 1.72 -- -- 19.47% -- 

DRIVE (Carpool) -- 0 -- -- 0 -- 

Biking & CYCLE! -- 1.58 -- -- 17.89% -- 

Walking -- 0.81 -- -- 9.14% -- 

Total -- 8.83 -- -- 100% -- 

 

4.1.2. The Mobility Hub in Downtown Cohoes 

Table 4.2 shows the predicted mode shift of potential trips after the demonstration of the 

mobility hub in Downtown Cohoes. In general, 0.1128% of the potential trips were multimodal 
with a transfer in the mobility hub, resulting in 6.17 trips/day. About half of these trips were 

shifted from direct trips with private auto (-3.46 trips/day). As for these multimodal trips, 49.41% 

of the travelers used bus, 14.44% of the travelers used private car, 18.82% of the travelers used 
car share (DRIVE), 8.13% of the travelers used bike or CYCLE!, and 9.19% of the travelers chose 

to walk. The increase of bus ridership was 3.05 - 0.53 = 2.52 trips/day.  

Table 4.2. Impacts on the mode shift of potential trips (Downtown Cohoes) 

 Trips/day 
(before) 

Trips/day 
(after) 

Trips/day 
(changed) 

Proportion 
(before) 

Proportion 
(after) 

Proportion 
(changed) 

Direct trips without using the mobility hub 

Private_auto 3,069.5 3,066.0 -3.46 56.12% 56.05% -0.0633% 

Transit 467.12 466.59 -0.53 8.54% 8.53% -0.0096% 

On_demand_auto 32.48 32.45 -0.04 0.59% 0.59% -0.0007% 

Biking 20.65 20.63 -0.02 0.38% 0.38% -0.0004% 

Walking 910.59 909.57 -1.03 16.64% 16.63% -0.0188% 

Carpool 969.66 968.57 -1.09 17.73% 17.71% -0.0200% 
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Total 5,470 5,464 -6.17 100% 99.89% -0.1128% 

Multimodal trips using the mobility hub 

Bus (Transit) -- 3.05 -- -- 49.41% -- 

Car (Private_auto) -- 0.89 -- -- 14.44% -- 

DRIVE (Carpool) -- 1.16 -- -- 18.82% -- 

Biking & CYCLE! -- 0.50 -- -- 8.13% -- 

Walking -- 0.57 -- -- 9.19% -- 

Total -- 6.17 -- -- 100% -- 

 

4.2. Impacts on VMT and Carbon Emission 

4.2.1. The Mobility Hub in UAlbany Downtown Campus 

Table 4.3 shows the impacts of UAlbany Downtown Campus hub on VMT and carbon emission, 

in which the ‘VMT (before)’ column shows the VMT before the demonstration of the mobility 
hub, the ‘VMT (after-direct)’ column shows the VMT brought by direct trips after the 

demonstration of the mobility hub, and the ‘VMT (after-multi)’ column shows the VMT brought 
by multimodal trips after the demonstration of the mobility hub. In general, the mobility hub 

brought a car VMT reduction of 55.83 miles per day (20.37 miles per year), reducing 22.33 

kilograms of carbon emission per day (8.15 metric tons per year). 

Table 4.3. Impacts on the VMT and carbon emission (UAlbany Downtown Campus) 

 VMT (before) VMT (after) VMT (changed) Reduced Carbon 
Emission 

Counting per day 

Private_auto 100,550 miles 100,508 miles -41.57 miles -16.63 kilograms 

Carpool 24,509 miles 24,495 miles -14.26 miles -5.70 kilograms 

Total vehicles 125,059 miles 125,003 miles -55.83 miles -22.33 kilograms 

Counting per year 

Private_auto 3.670*107 miles 3.668*107 miles -15.17 thousand miles -6.07 metric tons 

Carpool 8.946*106 miles 8.941*106 miles -5.20 thousand miles -2.08 metric tons 
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Total vehicles 4.565*107 miles 4.563*107 miles -20.37 thousand miles -8.15 metric tons 

 

4.2.2. The Mobility Hub in Downtown Cohoes 

Table 4.4 shows the impacts of Downtown Cohoes hub on VMT and carbon emission. In general, 

the mobility hub brought a car VMT reduction of 36.06 miles per day (13.16 thousand miles per 
year), reducing 14.45 kilograms of carbon emission per day (5.27 metric tons per year). 

Table 4.4. Impacts on the VMT and carbon emission (Downtown Cohoes) 

 VMT (before) VMT (after) VMT (changed) Reduced Carbon 
Emission 

Counting per day 

Private_auto 28,573 miles 28,536 miles -36.92 miles -14.79 kilograms 

Carpool 7,311 miles 7,312 miles +0.86 miles +0.34 kilograms 

Total vehicles 35,884 miles 35,848 miles -36.06 miles -14.45 kilograms 

Counting per year 

Private_auto 1.043*107 miles 1.042*107 miles -13.48 thousand miles -5.39 metric tons 

Carpool 2.669*106 miles 2.669*106 miles +0.32 thousand miles +0.12 metric tons 

Total vehicles 1.310*107 miles 1.308*107 miles -13.16 thousand miles -5.27 metric tons 

 

4.2.3. Summary of VMT and GHG Emissions Impacts 

In total, the two hubs were projected to reduce VMT by (55.83+36.92 = 92.75) vehicle-miles per 

day, or 33,853 vehicle-miles in a year. The corresponding GHG emissions reduction was 

(22.33+14.45 = 36.78) kg per day, or 13.42 metric tons of carbon emissions (MTCE) per year, 
which is similar to the carbon footprint of two average households. In other words, there is 

potential for each mobility hub installment to reduce GHG emissions equivalent to one 
household’s worth each, although effectiveness varies by case. 
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4.3. Impacts on Consumer Surplus and More Scenarios 

4.3.1. Change of Consumer Surplus under the Context of Hub Service Fee 

Table 4.5 shows the increase of consumer surplus brought by the two mobility hubs, which was 
defined in Section 2.2.4. In general, the hub in UAlbany Downtown Campus brought an increase 

of consumer surplus of $0.1950 for each potential trip, and with 20,511 trips/day the total 
increased dollar amount equals to $4,000/day. The hub in Downtown Cohoes brought an 

increase of consumer surplus of $0.3185 for each potential trip, and with 5.470 trips/day the total 

increased dollar amount equals to $1,742/day. The interpretation is that having the mobility hub 
created economic value for travelers defined within the vicinity of the hubs indicated in Figure 

3.8, equivalent to that dollar amount for each of their trips whether or not they used the hub.  

Table 4.5. Impacts on consumer surplus of potential trips 

 UAlbany Downtown Campus Downtown Cohoes 

Change of consumer surplus +$0.1950/trip +$0.3185/trip 

Total number of trips 20,511 trips/day 5,470 trips/day 

Total dollar amount $4,000/day $1,742/day 

However, the total predicted revenue collected by the UAlbany hub (only including bus and 
DRIVE, since we don’t have the information of how many bike trips used CYCLE!) is only 

$34.49/day or $1,035/month, and the total predicted revenue collected by the UAlbany hub is 

only $24.44/day or $733/month. The main reason for this huge gap is that the proportion of trips 
using the mobility hub is quite low (about 0.1%), which could be attributed to two aspects: 

 Currently there are only two mobility hubs implemented, resulting in limited convenience 
brought by multimodal trips in terms of saved travel time and available mode transfers. 
In that case, the performance of mobility hub service is not that attractive compared with 
driving private vehicles. 

 Given that the CDTA service fare for bus line is generally $1.50 per trip (without any 
discount considered), the added value per trip is around $0.20-$0.30, which is at about 
one fifth to one seventh of the full bus fare. Considering that user preferences are quite 
diverse, various pricing policies should be designed to balance the added value and 
charged fare per trip. 
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4.3.2. A Single Scenario: What if There Was a Discount in Using the Hub 

Besides assessing the impacts of current pricing policies of the two mobility hubs, our calibrated 
model can assess impacts under new scenarios. To showcase the potential of our methodology, 

this section applies our model to a simple scenario in which bus service is free for trips using 
the mobility hub. Table 4.6 summarizes the change of mode share, VMT, carbon dioxide 

emission, and consumer surplus, and the total revenue collected at the hub. We saw a total 
increase of 3.12 trips/day using the mobility hub (2.33 trips/day for the UAlbany hub, 0.79 

trips/day for the Cohoes hub), resulting in a further increase in bus ridership in the hub 

(3.26+1.67 = 4.93) trips/day, a further reduction in VMT (23542-20377+19966-13475 = 9,656 
vehicle-miles/year) and carbon emission (9.42-8.15+7.99-5.27 = 3.99 tons/year), a further 

increase in consumer surplus (about $0.06/trip). However, this was at the cost of losing total 
revenue of $34.49 - $15.73 + $24.44 - $12.45 = $30.75 per day. 

Table 4.6. Change of impacts if bus is free at the mobility hub 

 Trips/day 
(before) 

Trips/day 
(after) 

Trips/day 
(changed) 

Proportion 
(before) 

Proportion 
(after) 

Proportion 
(changed) 

Multimodal trips using the mobility hub (UAlbany Downtown Campus) 

Bus (Transit) 4.72 7.98 +3.26 53.50% 71.51% +18.01% 

Car (Private_auto) 1.72 1.40 -0.32 19.47% 12.57% -6.90% 

DRIVE (Carpool) 0 0 0 0 0 0% 

Biking & CYCLE! 1.58 1.15 -0.43 17.89% 10.26% -7.63% 

Walking 0.81 0.63 -0.18 9.14% 5.66% -3.48% 

Total 8.83 11.16 +2.33 100% 100% 0% 

Impact assessment (UAlbany Downtown Campus) 

 Before After 

Reduced VMT 20,377 vehicle-miles/year 23,542 vehicle-miles/year 

Reduced C02 emission 8.15 tons/year 9.42 tons/year 

Increased consumer surplus  $0.1950/trip $0.2503/trip 

Total hub revenue $34.49/day $15.73/day 

Multimodal trips using the mobility hub (Downtown Cohoes) 
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Bus (Transit) 3.05 4.72 +1.67 49.41% 67.87% +18.46% 

Car (Private_auto) 0.89 0.56 -0.33 14.44% 7.98% -6.46% 

DRIVE (Carpool) 1.16 0.86 -0.30 18.82% 12.31% -6.51% 

Biking & CYCLE! 0.50 0.34 -0.16 8.13% 4.96% -3.17% 

Walking 0.57 0.48 -0.09 9.19% 6.89% -2.30% 

Total 6.17 6.96 +0.79 100% 100% 0% 

Impact assessment (Downtown Cohoes) 

 Before After 

Reduced VMT 13,475 vehicle-miles/year 19,966 vehicle-miles/year 

Reduced C02 emission 5.27 tons/year 7.99 tons/year 

Increased consumer surplus  $0.3185/trip $0.3746/trip 

Total hub revenue $24.44/day $12.45/day 

 

4.3.3. Proposed Scenarios for the Future Work 

The key to the success of mobility hubs is finding the best site location, hub density, and pricing 

policy to encourage more travelers to use them in a broader range. This requires behavioral 

simulations under a series of scenarios such as what would be the impact on mobility hubs if 
there were a discount on the hub service fare?  Given 10 candidate sites to build new mobility 

hubs, how to rank them? If there were enough mobility hubs, could a fare reduction or fare free 
policy be supplemented by revenues contributed by partner mobility providers?  

Our methodology has the potential to answer these questions. Using existing bus terminal 

locations, we can quickly cut out potential trips that might be impacted, calibrate hub-related 
coefficients for new mobility hubs (or use current coefficients if we do not have additional 

information), and then calculate the predicted benefits. We may even do this for a sample of 30-
50 sites, and then build a regression model off more accessible public data to then apply this 

more easily across NYS at a much larger scale. To be more specific, future scenarios can include: 

 Analyzing potential new sites using the demand model to quantitively rank locations for 
different objectives (like equity, VMT reduction, Ridership, etc.). 
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 Analyzing fare discount policy impact on ridership increase to mobility partners and using 
that to determine minimum number of additional hubs that would allow mobility partners 
to cover fare free for transit. 

 Analyzing fare bundling with partners to see what discounts can be supported by the 
increase in demand for transit and partner(s). 

 Optimizing total revenue for the partners by setting a bundle fare or transit fare price. 
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5. Conclusion & Future Work 

This report focuses on the impact assessment of two mobility hubs built in UAlbany Downtown 
Campus and Downtown Cohoes. 

According to the survey data, 52.23% of the trips are made by not-low-income population, 

8.90% of the trips are made by low-income population, 17.49% of the trips are made by seniors, 
and 21.37% of the trips are made by students. Our calibrated model results showed that the 

UAlbany hub introduced 8.83 multimodal trips per day (accounting for 0.0430% of the potential 
trips) and the Cohoes hub introduced 6.17 multimodal trips per day (accounting for 0.1003% of 

the potential trips). For each weekday the UAlbany hub brought an increase of 4.45 bus trips, a 

reduction of VMT of 55.83 miles, a reduction of 22.33 kilograms of CO2 emission, and an increase 
of consumer surplus of $0.1950 per trip. For each weekday Cohoes hub brought an increase of 

2.52 bus trips, a reduction of VMT of 36.06 miles, a reduction of 14.45 kilograms of CO2 emission, 
and an increase of consumer surplus of $0.3185 per trip. In a hypothetical scenario in which the 

bus service is free for trips using the mobility hub, we showed that there would be a further 
increase of bus trips (4.93 trips/day), a further reduction in VMT (9,656 vehicle-miles/year), a 

further reduction in carbon emission (3.99 metric tons/year), and a further increase in consumer 

surplus ($0.06/trip) at the cost of losing total revenue collected at the hubs ($30.75/day). 

The results above are based on our calibrated model given available data at this stage. In the 

future, many other datasets can help better fit our model, including but not limited to: (1) 
detailed time and cost of trips with mode transfers at the mobility hubs (instead of retrieving 

from Google Direction API that is a rough approximation); (2) multi-source ground truth data to 

validate our model results, such as daily bike trips (including with CYCLE! and private vehicles), 
monthly mode share at the mobility hub, or total trips using the mobility hub per year. Moreover, 

we can train our mode choice model with the latest dataset (April to June 2023) on both weekday 
and weekend, which could also help to increase the prediction accuracy, and; (3) more responses 

(around 100) of the survey to make it feasible to calibrate a separate mode choice model (in that 

case the calibration of hub-related coefficients would be more stable). 

The future of mobility hubs should be more than the two demonstrated ones. The key to the 

success of mobility hubs is finding the best site location, hub density, and pricing policy to 
encourage more travelers to use them in a broader range. Since the pre-trained model is for the 

whole New York State, our methodology is scalable to any number of mobility hubs implemented 
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in the New York State. Once our model became stable after fitting enough survey responses and 

app backend data, we only need available mode options at each hub for impact assessment since 
statewide trip OD pairs and travelers’ preferences are already known. The only assumption we 

need to make is that these mobility hubs are distant and independent to each other. Moreover, 
the calibrated model in this report can be applied to many future works. For instance, potential 

new sites can be ranked quantitively using the model for different objectives (like equity, VMT 

reduction, Ridership, etc.). Impact of fare discount policy can be predicted and total revenue for 
hub partners can be optimized. 
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Appendix A. Details of Potential Trips 

Table A.1. Details of potential trips related to UAlbany Downtown Campus 

 
 

Table A.2. Details of potential trips related to Downtown Cohoes 
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Appendix B. Inferring Trip Monetary Cost 

Table B.1. Monetary cost inference for private auto, public transit, and Car Share (DRIVE)  

1.Private auto 

Item Unit price Description 

Cost per trips $0.07/mile For trips of which the origin and destination are 
outside of NYC. This is calculated based on 2019 NY 
gas price ($2.542/gallon3) divided by the average 
mpg of cars and SUVs (36.33 mpg4) 

2. Public transit 

Item Unit price Description 

Cost for seniors $0.75/trip Riders who are 65 or older have a 50% discount. 

Cost for students $1.5/trip Students discount 

Cost for other population $2/trip Regular bus fee 

3. Car share (DRIVE) 

Item Unit price Description 

Hourly charge $5/hour An hourly charge for the trip. 

 

  

 

   

 

3 https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=emm_epmr_pte_y35ny_dpg&f=m  
4 https://techxplore.com/news/2022-04-vehicles-average-mpg.html, https://www.indyautoman.com/blog/best-
mpg-suv, https://nhts.ornl.gov/documentation  


