

Jeanine Carhart CEIS 114 FINAL PROJECT AUGUST 27, 2022

INTRODUCTION

PROJECT SCOPE

- > Project Plan for IoT Traffic Controller
- > Create the Traffic Controller
- > Create a Multiple Traffic Light Controller
- > Create a Multiple Traffic Light Controller with a Cross Walk
- Creating a Multiple Traffic Light Controller with a Cross Walk and an Emergency Buzzer
- > Group Discussion Feedback & Final Project Option 2

Module 2 Project Plan for IoT Traffic Controller

INVENTORY

- ✓ ESP 32 Board
- ✓ Colored LEDs: Red, Yellow,Green, and Blue
- ✓ 220 Ohm Resistors (optional)
- ✓ Wires
- ✓ Breadboard(s)
- \checkmark LCD Unit with I2C Adapter
- ✓ Active Buzzer
- ✓ Mini Router
- ✓ Push Button(s)
- ✓ PIR Motion Sensor

ESP 32

Microcontroller mounted and powered ON

Installation of Arduino IDE

💿 WiFiScan Arc	duino 1.8.19		-		\times			
File Edit Sketch 1	Tools Help							
ViFiScan /* * This * The Z * the r */ #include	Auto Format Archive Sketch Fix Encoding & Reload Manage Libraries Serial Monitor Serial Plotter WiFi101 / WiFiNINA Firmware Update Board: "DOIT ESP32 DEVKIT V1" Upload Speed: "921600" Flash Frequency: "80MHz"	Ctrl+T Ctrl+Shift+I Ctrl+Shift+M Ctrl+Shift+L r r	n WiFi networks. The WiFi Shield library, ne different file you need to include:					
	Core Debug Level: "None"	>						
void setu	Port: "COM5"	>	Serial ports					
{ Seria	Get Board Info Programmer Burn Bootloader	>	COM3 COM4 COM5					
// Se	// Set WiFi to station mode and disconnect from an AP if it was previously connected							
WiFi.	WiFi.mode(WIFI_STA);							
WiFi.disconnect();								
delay(100);								
Seria	<pre>1.println("Setup done 0</pre>	");						
Traid Loop								

Screenshot of Arduino IDE with **Port** selected from Tools menu COM5

🔽 Autoscroll 🔽 Show timestam

U UI U LIX INX ACCESSIONICY, INVESTIGAC

```
- 🗆 🗙
```

No line ending V 115200 baud

Clear output

Send

10.12.30.012 / 0. Sulls up (00) 16:42:38.042 -> 6: MySpectrumWiFi2b-2G (-85)* 16:42:38.042 -> 7: SpectrumSetup-70 (-86)* 16:42:38.042 -> 8: SpectrumSetup-31 (-89)* 16:42:38.042 -> 16:42:43.060 -> scan start 16:42:47.960 -> scan done 16:42:47.960 -> 9 networks found 16:42:47.960 -> 1: NETGEAR71 (-53)* 16:42:47.960 -> 2: NETGEAR-Guest (-53)* 16:42:48.007 -> 3: DIRECT-c2-HP M283 LaserJet (-55)* 16:42:48.007 -> 4: surfs-up (-83)* 16:42:48.007 -> 5: MySpectrumWiFi2b-2G (-84)* 16:42:48.007 -> 6: NETGEAR63 (-84)* 16:42:48.007 -> 7: SpectrumSetup-70 (-86)* 16:42:48.054 -> 8: SpectrumSetup-31 (-88)* 16:42:48.054 -> 9: FatBallz (-92)* 16:42:48.054 -> 16:42:53.064 -> scan start 16:42:57.575 -> scan done 16:42:57.575 -> 8 networks found 16:42:57.575 -> 1: NETGEAR71 (-55)* 16:42:57.575 -> 2: NETGEAR-Guest (-56)* 16:42:57.575 -> 3: DIRECT-c2-HP M283 LaserJet (-59)* 16:42:57.575 -> 4: SpectrumSetup-70 (-84)* 16:42:57.621 -> 5: MySpectrumWiFi2b-2G (-84)* 16:42:57.621 -> 6: SpectrumSetup-31 (-86)* 16:42:57.621 -> 7: RUTHLESS (-87)* 16:42:57.621 -> 8: surfs-up (-88)* 16:42:57.667 ->

ESP 32 WiFi Scan

Screenshot of Serial Monitor in Arduino IDE showing the available networks

Module 3 Creating the Traffic Controller

Circuit with working LEDs

- ESP 32 Board
- Colored LEDs: Red, Yellow and Green
- 220 Ohm Resistors (optional)
- Wires
- Breadboard

Screenshot of code in Arduino IDE

Sketch júl23d Arduino 1.8.19
sketch_jul23d §
// === Jeanine Carhart ====
// Module #3 project
<pre>const int red_LED1 = 14; // The red LED1 is wired to ESP32 board pin GPI014 const int yellow_LED1 = 12; // The yellow LED1 is wired to ESP32 board pin GPI012 const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPI013</pre>
// the setup function runs once when you press reset or power the board
<pre>void setup() {</pre>
<pre>pinMode(red_LED1, OUTPUT); // initialize digital pin GPIO14 (Red LED1) as an output.</pre>
<pre>pinMode(yellow_LED1, OUTPUT); // initialize digital pin GPIO12 (yellow LED1) as an output.</pre>
Lione uploading.
Une uploading. Writing at 0x00014000 (28 %)
Une uplaang. Writing at 0x00014000 (28 %) Writing at 0x00018000 (42 %)
Une uploading. Writing at 0x00014000 (28 %) Writing at 0x00018000 (42 %) Writing at 0x0001c000 (57 %)
Une uploading. Writing at 0x00014000 (28 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %)
Une uploading. Writing at 0x00014000 (28 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00024000 (85 %)
Une uploading. Writing at 0x00014000 (28 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00028000 (100 %) Wrote 199024 bytes (103011 compressed) at 0x00010000 in 1.7 seconds (effective 950.6 kbit/s)
Une uploading. Writing at 0x00014000 (28 %) Writing at 0x0001c000 (42 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00028000 (100 %) Wrote 199024 bytes (103011 compressed) at 0x00010000 in 1.7 seconds (effective 950.6 kbit/s) Hash of data verified.
<pre>Une uploading. Writing at 0x00014000 (28 %) Writing at 0x0001c000 (42 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00028000 (100 %) Wrote 199024 bytes (103011 compressed) at 0x00010000 in 1.7 seconds (effective 950.6 kbit/s) Hash of data verified. Compressed 3072 bytes to 128</pre>
<pre>Une uploading. Writing at 0x00014000 (28 %) Writing at 0x00018000 (42 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00028000 (100 %) Wrote 199024 bytes (103011 compressed) at 0x00010000 in 1.7 seconds (effective 950.6 kbit/s) Hash of data verified. Compressed 3072 bytes to 128 Writing at 0x0008000 (100 %)</pre>
Dome uploading. Writing at 0x00014000 (28 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00028000 (100 %) Wrote 199024 bytes (103011 compressed) at 0x00010000 in 1.7 seconds (effective 950.6 kbit/s) Hash of data verified. Compressed 3072 bytes to 128 Writing at 0x0008000 (100 %) Writing at 0x0008000 (100 %)
<pre>Ubne updating. Writing at 0x00014000 (28 %) Writing at 0x0001c000 (42 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00028000 (100 %) Wrote 199024 bytes (103011 compressed) at 0x00010000 in 1.7 seconds (effective 950.6 kbit/s) Hash of data verified. Compressed 3072 bytes to 128 Writing at 0x00008000 (100 %) Wrote 3072 bytes (128 compressed) at 0x00008000 in 0.0 seconds (effective 2048.0 kbit/s) Hash of data verified.</pre>
<pre>Writing at 0x00014000 (28 %) Writing at 0x0001c000 (42 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00028000 (100 %) Wrote 199024 bytes (103011 compressed) at 0x00010000 in 1.7 seconds (effective 950.6 kbit/s) Hash of data verified. Compressed 3072 bytes to 128 Writing at 0x0008000 (100 %) Wrote 3072 bytes (128 compressed) at 0x00008000 in 0.0 seconds (effective 2048.0 kbit/s) Hash of data verified.</pre>
<pre>Ubneulpagng. Writing at 0x00014000 (28 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00028000 (100 %) Wrote 199024 bytes (103011 compressed) at 0x00010000 in 1.7 seconds (effective 950.6 kbit/s) Hash of data verified. Compressed 3072 bytes to 128 Writing at 0x0008000 (100 %) Wrote 3072 bytes (128 compressed) at 0x00008000 in 0.0 seconds (effective 2048.0 kbit/s) Hash of data verified. Leaving</pre>
<pre>Working at 0x00014000 (28 %) Writing at 0x0001c000 (57 %) Writing at 0x00020000 (71 %) Writing at 0x00024000 (85 %) Writing at 0x00028000 (100 %) Wrote 199024 bytes (103011 compressed) at 0x00010000 in 1.7 seconds (effective 950.6 kbit/s) Hash of data verified. Compressed 3072 bytes to 128 Writing at 0x0008000 (100 %) Wrote 3072 bytes (128 compressed) at 0x00008000 in 0.0 seconds (effective 2048.0 kbit/s) Hash of data verified. Leaving Hash of data verified.</pre>

Screenshot of code in Arduino IDE showing my name in the comment

SP32 Dev Module, Disabled, Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS), 240MHz (WiFi/BT), OIO, 80MHz, 4MB (32Mb), 921600, None on COM5

Module 4 Creating a Multiple Traffic Light Controller

Circuit with working LEDs

- ESP 32 Board
- Colored LEDs: Red, Yellow and Green (two sets)
- 220 Ohm
 Resistors
 (optional)
- Wires
- Breadboard

Screenshot of code in Arduino IDE

🞯 sketch_jul28a | Arduino 1.8.19

File Edit Sketch Tools Help

sketch_jul28a

1000

// === Jeanine Carhart ====
// Module #4 project

// Define some labels

const int red_LED1 = 14; // The red LED1 is wired to ESP32 board pin GPI014
const int yellow_LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPI012
const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPI013
const int red_LED2 = 25; // The red LED2 is wired to Mega board pin GPI025
const int yellow_LED2 = 26; // The yellow LED2 is wired to Mega board pin GPI0 26
const int green_LED2 = 27; // The green LED2 is wired to Mega board pin GPI0 27

// the setup function runs once when you press reset or power the board
void setup() {

pinMode(red_LED1, OUTPUT); // initialize digital pin GPIO14 (Red LED1) as an output. pinMode(yellow_LED1, OUTPUT); // initialize digital pin GPIO12 (yellow LED1) as an output. pinMode(green_LED1, OUTPUT); // initialize digital pin GPIO13 (green LED1) as an output. pinMode(red_LED2, OUTPUT); // initialize digital pin GPIO25(Red LED2) as an output. pinMode(yellow_LED2, OUTPUT); // initialize digital pin GPIO26 (yellow LED2) as an output.

riting at 0x00008000... (100 %) Frote 3072 bytes (128 compressed) at 0x00008000 in 0.0 seconds (effective 847.4 kbit/s).. Fash of data verified. Screenshot of code in Arduino IDE showing my name in the comment

ESP32 Dev Module, Enabled, Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS), 240MHz (WiFi/BT), QIO, 80MHz, 4MB (32Mb), 115200, Error on COM5

Module 5 Creating a Multiple Traffic Light Controller with a Cross Walk

Circuit with working LEDs

- ESP 32 Board
- Colored LEDs: Red, Yellow and Green (two sets)
- 220 Ohm Resistors (optional)
- Push Button
- Wires
- Breadboard

Screenshot of Code in Arduino IDE

Sketch_aug05b Arduino 1.8.19	- 0
File Edit Sketch Tools Help	
sketch_aug05b	
// === Jeanine Carhart ====	
// Module #5 project	
const int red_LED1 = 14; // The red LED1 is wired to ESP32 board pin GPI014	
const int yellow_LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPI012	
<pre>const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPI013</pre>	
<pre>const int red_LED2 = 25; // The red LED2 is wired to Mega board pin GPI025</pre>	
<pre>const int yellow_LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26</pre>	
<pre>const int green_LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27</pre>	
int Xw_value;	
const int Xw_button = 19; //Cross Walk button	
// the setup function runs once when you press reset or nower the board	
void setup() {	
pinMode(Xw button, INPUT PULLUP); // 0=pressed, 1 = unpressed button	
Serial.begin(115200);	
pinMode(red_LED1, OUTPUT); // initialize digital pin 14 (Red LED1) as an output.	
Leaving	
Hard resetting via RTS pin	

Screenshot of code in Arduino IDE showing my name in the comment

₽₽

💿 COM5

12:00:41.383 ·	-> Co	unt =	5	== 1	Valk	==				
12:00:42.412	-> Co	unt =	4	== 1	Valk	==				
12:00:43.395	-> Co	unt =	3	== 1	Valk	==				
12:00:44.375 ·	-> Co	unt =	2	== 1	Valk	==				
12:00:45.404	-> Co	unt =	1	== 1	Valk	==				
12:00:46.383	-> =	= Do No	ot V	Walk	==					
12:00:56.381	-> =	= Do No	ot V	Walk	==					
12:01:06.394	-> =	= Do No	ot V	Walk	==					
12:01:16.399	-> =	= Do No	ot V	Walk	==					
12:01:26.394	-> Co	unt =	10	==	Walk	ς ==	=			
12:01:27.380	-> Co	unt =	9	== 1	Valk	==				
12:01:28.407	-> Co	unt =	8	== 1	Valk	==				
12:01:29.388 ·	-> Co	unt =	7	== 1	Valk	==				
12:01:30.413	-> Co	unt =	6	== 1	Valk	==				
12:01:31.395	-> Co	unt =	5	== 1	Valk	==				
12:01:32.422	-> Co	unt =	4	== 1	Valk	==				
12:01:33.401	-> Co	unt =	3	== 1	Valk	==				
12:01:34.384	-> Co	unt =	2	== 1	Valk	==				
12:01:35.408	-> Co	unt =	1	== 1	√alk	==				
12:01:36.386	-> =	= Do No	ot I	Walk	==					
12:01:46.384	-> =	= Do No	ot I	Walk	==					
12:01:56.381	-> =	= Do No	ot V	Walk	==					
12:02:06.394	-> =	= Do No	ot V	Walk	==					
12:02:16.388	-> Co	unt =	10	==	Walk	c ==	=			
12:02:17.411	-> Co	unt =	9	== 1	Valk	==				
12:02:18.395	-> Co	unt =	8	== 1	Valk	==				
🔽 Autoscroll 🔽 Show tim	estamp					1	No line ending	~	115200 baud	~

Screenshot of Serial Monitor in Arduino IDE

 \times

Send

Clear output

Screenshot of output in Serial Monitor

Module 6 Creating a Multiple Traffic Light Controller with a Cross Walk and an Emergency Buzzer

Circuit with working LEDs and LCD display

ESP 32 Board

- Colored LEDs: Red, Yellow and Green (two sets)
- 220 Ohm Resistors (optional)
- Push Button
- LCD Unit with Message Display
- ✤ Wires
- Breadboard

Screenshot of code in Arduino IDE

💿 sketch_aug12a | Arduino 1.8.19 File Edit Sketch Tools Help 🔶 🛅 奎 📩 Upload sketch aug12a // === Jeanine Carhart ==== // Module #6 project #include <Wire.h> //lcd #include <LiquidCrystal I2C.h> //lcd LiquidCrystal I2C lcd(0x27,16,2); //set the LCD address to 0x3F for a 16 chars and 2-line display // if it does not work then try 0x3F, if both addresses do not work then run the scan code below const int bzr=32: // GPI032 to connect the Buzzer const int red LED1 = 14; // The red LED1 is wired to ESP32 board pin GPI014 const int yellow LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPI012 const int green LED1 = 13; // The green LED1 is wired to ESP32 board pin GPI013 const int red LED2 = 25; // The red LED2 is wired to Mega board pin GPI025 const int yellow LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26 const int green LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27

int Xw_value; const int Xw_button = 19; //Cross Walk button Screenshot of code in Arduino IDE showing my name in the comment

COM5

16:19:03.095	->	Count = 6 == Walk ==
16:19:04.174	->	Count = 5 == Walk ==
16:19:05.297	->	Count = 4 == Walk ==
16:19:06.374	->	Count = 3 == Walk ==
16:19:07.453	->	Count = 2 == Walk ==
16:19:08.533	->	Count = 1 == Walk ==
16:19:09.610	->	Count = 0 == Walk ==
16:19:10.736	->	== Do Not Walk ==
16:19:20.803	->	== Do Not Walk ==
16:19:30.822	->	== Do Not Walk ==
16:19:40.866	->	== Do Not Walk ==
16:19:50.884	->	Count = 10 == Walk ==
16:19:51.962	->	Count = 9 == Walk ==
16:19:53.041	->	Count = 8 == Walk ==
16:19:54.123	->	Count = 7 == Walk ==
16:19:55.201	->	Count = 6 == Walk ==
16:19:56.284	->	Count = 5 == Walk ==
16:19:57.367	->	Count = 4 == Walk ==
16:19:58.446	->	Count = 3 == Walk ==
16:19:59.525	->	Count = 2 == Walk ==
16:20:00.600	->	Count = 1 == Walk ==
16:20:01.677	->	Count = 0 == Walk ==
16:20:02.851	->	== Do Not Walk ==
16:20:12.879	->	== Do Not Walk ==

Circuit with working LEDs and LCD display

Screenshot of output in Serial Monitor

Module 7 & 8 Group Discussion Feedback & Final Project - Option 2

Group Discussion

Screenshots of Group Feedback on Project 6

Circuit with working LEDs And LCD display

- ESP 32 Board
- Colored LEDs: Red, Yellow and Green (two sets)
- > One Blue LED Emergency Light
- ➢ 220 Ohm Resistors (optional)
- > Push Buttons 2
- LCD Unit
- Buzzer
- PIR Motion Sensor
- > Router
- ➢ Wires
- Breadboard

Screenshot of code in Arduino IDE

sketch_aug_23_Option2 | Arduino 1.8.19

File Edit Sketch Tools Help

sketch_aug_23_Option2

// === Jeanine Carhart ==== // Final Project Component - Option 2

#include <Wire.h> //lcd
#include <LiquidCrystal_I2C.h> //lcd
LiquidCrystal_I2C lcd(0x3F,16,2); //set the LCD address to 0x27 for a 16 chars and 2-line display
// if it does not work then try 0x3F, if both addresses do not work then run the scan code below
const int bzr=32; // GPI032 to connect the Buzzer

// Set GPIOs for LED and PIR Motion Sensor const int led = 16; // Flashing White (Blue) Led const int motionSensor = 17; int pirState = 0 ; int j,Em_value,Xw_value;

const int Em_button = 23; // Emergency button
const int Xw_button = 19; //Cross Walk button

Done uploading.

Leaving... Hard resetting via RTS pin... Screenshot of code in Arduino IDE showing your name in the comment

Screenshot of Serial Monitor in Arduino IDE

Screenshot of output in Serial Monitor

COM5		
21:53:33.828	->	== Do Not Walk ==
21:53:34.859	->	== Do Not Walk ==
21:53:35.935	->	== Do Not Walk ==
21:53:36.962	->	== Do Not Walk ==
21:53:37.993	->	== Do Not Walk ==
21:53:39.024	->	== Do Not Walk ==
21:53:40.103	->	== Do Not Walk ==
21:53:41.133	->	== Do Not Walk ==
21:53:42.164	->	== Do Not Walk ==
21:53:43.191	->	== Do Not Walk ==
21:53:46.192	->	Count = 10 == Walk ==
21:53:47.783	->	Count = 9 == Walk ==
21:53:49.376	->	Count = 8 == Walk ==
21:53:50.973	->	Count = 7 == Walk ==
21:53:52.522	->	Count = 6 == Walk ==
21:53:54.118	->	Count = 5 == Walk ==
21:53:55.710	->	Count = 4 == Walk ==
21:53:57.254	->	Emergency button was pressed
21:54:07.317	->	== Do Not Walk ==
21:54:08.347	->	== Do Not Walk ==
21:54:09.425	->	== Do Not Walk ==
21:54:10.457	->	== Do Not Walk ==
21:54:11.492	->	== Do Not Walk ==
21:54:12.525	->	== Do Not Walk ==
21:54:13.558	->	== Do Not Walk ==
21:54:14.633	->	== Do Not Walk ==
Autoscroll Show ti	mestar	mn

Challenges

Challenges

Couldn't connect breadboard to internet	Had to download drivers again
Buzzer wasn't working	Wire was plugged in wrong pin
Motion detector wasn't working	Need to warm detector slightly

Career Skills

Career Skills

 Problem solving 	✓ Patience
✓ Persistence	 Attention to Detail
✓ Research	 Analytical Thinking

Conclusion

Conclusion

Learned how to create a device with two sets of traffic lights and how to control them for a crosswalk and an emergency light.

This project gave me a little taste of how our traffic lights are controlled in real life and how useful automation and the IoT is in our day-to-day life.