

PRIORITY RECOVERY PROJECT CONSTRUCTION OF A COMBINED HEAT AND POWER PLANT SRF-FUEL and BIOMASS

natural gas substitution

million m³/year

POWER

MW heat

MW electricity

million EURO

64.0 CAPEX

GUARANTEED PURCHASE OF ENERGY BY THE CITY FOR 25 YEARS

EURO/MWh electricity

EURO/MWh heat

LAND

CONSTRUCTION OF A COMBINED HEAT AND POWER PLANT

SRF-FUEL and BIOMASS

Construction of a modular Biopower 11 CEX thermal power plant (CHP) on RDF/SRF fuel, supplied from the existing solid waste plant, in the city of Zhytomyr Electrical capacity: 9.9-13.1 MW Heat production: 0-22 MW

Project goals

- enhance the city's energy independence, stability and security of heat and power supply;
- introduce a new source of combined heat and power generation;
- reduce energy costs for heating and decrease pollutant emissions.

Project Initiator:
utilize of RDF/SRF as a product of household waste
Zhytomyr City Council

Business model:

The investor establishes an enterprise and undertakes the construction and operation of the CHP plant.

The city guarantees supply of the primary energy source (RDF/SRF) and purchase of 100% of the produced thermal energy and a

Expected of applicable experit, it is sold by the Investors oame entermation wetfinancial institutions are invited to participate in the project.

The total cost - **EUR 64.0 million**, implementation - 2.5 years.

CONSTRUCTION OF A COMBINED HEAT AND POWER PLANT SRF-FUEL and BIOMASS

WHAT ARE THE BENEFITS OF THIS

PROJECT IMPLEMENTATION?

- Approximate Key Performance
 Indicators (KPI) and Financial
 Expected Discounted Payback
 Metrics:
 Period (DPP): 7.2 years;
- Internal Rate of Return (IRR):

 Benefits for the investor:
 16.4%

 A reliable source of income
 that will be insured by:
 - a) reliable supplies of cheap alternative fuel.
- b) guaranteed sales of

 Expected Social Outcomes:
 electricity and heat.
 The project will ensure reliable
 heat supply to the "Skhidny"
 microdistrict of Zhytomyr (about
 40 thousand residents).

The project will create new jobs and

generate tax revenue for the city

WHAT ARE THE ADVANTAGES AND

OPPORTUNITIES OF THIS PROJECT? Use of Alternative Fuel:

The project uses SRF produced in the region, eliminating the need for gas. A new plant for processing municipal solid waste (MSW) and producing RDF/SRF (fuel calorific value 3964 kcal/kg, capacity 40.0 thousand tons per year) City Government Support; is located 4 km away. This fuel can be Used city athenocities plangto winterlineably produced howestonenips agreement with the investor and the solid waste plant for a

guarantee the sale of electricity and heat of the new thermal power plant and its **Infrastructure:** fuel supply by SRF.

certain period. This agreement will

An existing electrical substation and network nearby transmits the generated

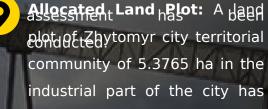
Reducing Environmental.

Impact:

The project minimizes the negative

impact

the


surrounding

What have been already

PERFORMED BY INITIATORS?

A **feasibility study (FS**) for the project has been developed and its environmental impact

and is in the communal

been allocated for the project

ownership of the city of

Zhytomyr.

t

CONSTRUCTION OF A COMBINED HEAT AND POWER PLANT

SRF-FUEL and BIOMASS

Fuel

tons of

standard

fuel/year.

Consumption:

41.9 thousand

SPECIFICATIONS OF THE BIOPOWER 11 CEX MODULAR BIOMASS POWER PLANT BY VALMET (FINLAND):

Heat

Production: 0-22

MW; annual heat

energy production

- 84 5 thousand

Gcal/year

Electrical
Capacity: 9.9-13.1

MW; annual electricity production (net) -

78.5 million

MAKN/EQUIPMENT:

one 'Valmet' steam boiler with a fluidized bed on biomass: Capacity of 28.9 MW, steam parameters: 9.27 MPa (abs.), 505°C, superheated steam production of 53.28 t/h (14.8 kg/s).

///

one steam condensing unit: Steam parameters at the inlet of 9.0 MPa, 500°C, with controlled steam extraction for cogeneration, electrical capacity of 10.0-13.1 MW, with a

condenser and water cooling of the fan cooling tower. **CHP Service Life:** 25 years

Visualization (Schematics, Conceptual Designs)
of the CHP Project

INSTALLATION OF A 5.64 MW HEAT PUMP

COMBINED AIR-TO-WATER + WATER-TO-WATER HEAT PUMP

Clean energy — for a sustainable future of Zhytomyr

Installation of a 5.64 MW heat pump on the premises of the existing district boiler house RK-6, Zhytomyr

Relevance of the project

Why a heat pump?
Use of renewable energy sources (the Teteriv River, air)
Reduced dependence on imported gas
Reduction of CO₂ emissions by 8,000 tons/year
Improving the city's energy security
Demonstrating innovation - one of the first projects of this scale in Ukraine

Location: Zhytomyr, boiler room RK6, Zhytomyr

•**Technology:** combined air-to-water + water-to-water heat pump

Energy source: Teteriv River + ambient air

Capacity: 5.64 MW

•Integration: connection to the boiler room's T2 return

pipeline **Expected financing of capital expenditures**:

Investors and international financial institutions are invited to participate in the project.

The total cost is **EUR 6.5 million**, and the implementation period is

INSTALLATION OF A 5.64 MW HEAT PUMP

COMBINED AIR-TO-WATER + WATER-TO-WATER HEAT PUMP

MHAT ARE THE ADVANTAGES OF

IMPLEMENTING THIS PROJECT?

- Approximate Key Performance Indicators (KPI) and Financial Indicators:
 - Expected Discounted Payback Period (DPP): 5.6 years;
 - Internal Rate of Return (IRR): 15.9%
- 2 Advantages:
 - Reduction of natural gas consumption to 35%
 - Reduction of CO₂ emissions to 8,000 t/year
 - Compliance with the UN Sustainable Development Goals
- Expected Social Results:
 - Reduction of heating supply costs for connected consumers

Improvement of the environmental situation in the city

WHAT ARE THE ADVANTAGES AND

OPPORTUNITIES OF THIS PROJECT?

Technical Innovation:

Combined Heat Pump
(air-to-water + water-to-water)
Use of the Teteriv River as a renewable energy source

Compatibility with existing gas boilers
Proximity to the thermal infrastructure
of the existing boiler house:

The existing district boiler house RK-6 and the nearby heating network make it possible to transfer the generated thermal energy to the Zhytomyr city network.

Reduction of environmental impact:

Stable heat supply for residents
Reduced dependence on gas price
fluctuations

Positive perception of "green" changes in the community

What has already been

ACCOMPLISHED BY THE INITIATORS

A technical and economic feasibility study (TEFS) for the project has been developed.

INSTALLATION OF A 5.64 MW HEAT PUMP

COMBINED AIR-TO-WATER + WATER-TO-WATER HEAT PUMP

Average electricity

consumption:

6.1 thousand

MW/year.

p. Temepit

TECHNICAL SPECIFICATIONS:

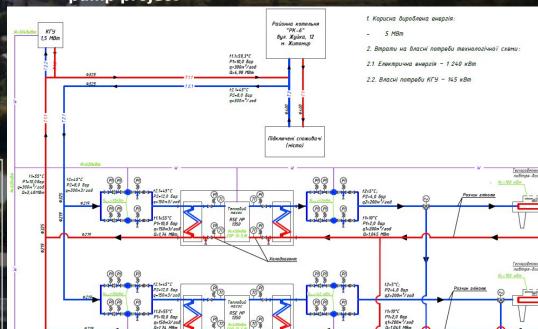
Heat generation:

5.64 MW;

annual heat energy production – 29 thousand

MW/year.

MAIN EQUIPMENT:



Heat exchangers for energy extraction from the heat source, pump unit, SCADA.

Service life: 30 years

Visualization (diagrams, concept development) of the heat pump project

Вода

INSTALLATION OF A 5.64 MW HEAT PUMP

COMBINED AIR-TO-WATER + WATER-TO-WATER HEAT PUMP

Possible impacts on the river

1.Local water cooling

- a) The discharge temperature will be lower than in the river, but the difference is insignificant (2-4 °C).
- b) Due to the current, rapid mixing occurs, and at a distance of 5–10 m from the outlet, the temperature practically equalizes.

2.Biological impact

- a) In winter, local cooling can affect microflora and fish (especially spawning).
- b) In summer, the effect is less noticeable, since the river is warmer and has a larger heat reserve.

3. Hydrodynamic effect

a) Means for holding down mechanical parts.

4. Visual and noise impact

- a) Shoreline structures should be minimally invasive (underwater fence, small pump chamber).
- b) The heat pump shall be quiet, especially compared to gas boilers.

