

N-TYPE HJT HIGH EFFICIENCY CELL ENEC-210RNHH18BB-255-262

25.5-26.2 %

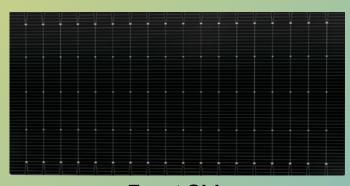
Cell Efficiency Range

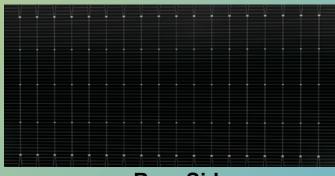
18BB

Busbar

High Bifaciality

High anti-LID & anti-PID performance


Low temperature Coefficient


High Efficiency

N-Type HJT Technology

Front Side

Rear Side

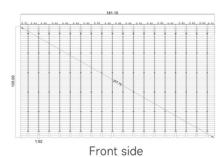
Higher Conversion Efficiency

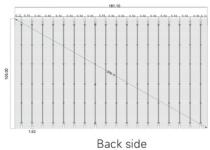
The passivation effect of the amorphous silicon layers in HJT cells reduces recombination losses of carriers. In contrast, the passivation quality of Perc and Topcon cells is not as good in this regard. The recombination of electron - hole pairs in HJT is minimized, allowing more photons to be effectively converted into electrical energy.

Low - Temperature Process

HJT technology uses a low - temperature manufacturing process. The process temperature is usually below 200°C, which is much lower than that of the high - temperature diffusion process in Perc or Topcon Cell(usually above 800 - 900°C). The low - temperature process can reduce the thermal stress on the silicon wafer and avoid damage to the crystal structure of the wafer.

Better Temperature Coefficient

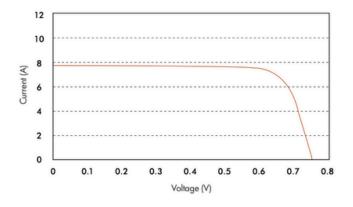

HJT Cells have a better temperature coefficient. Their power output decreases less with increasing temperature compared to Perc and Topcon cells. In practical applications, as the temperature rises during the day, the power generation performance of HJT cells is more stable. For example, for every 1°C increase in temperature, the power loss of HJT cells is about 0.25 - 0.3% lower than that of Perc cells.

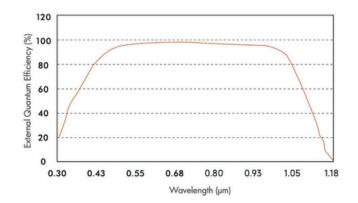

Bifaciality

HJT Cells have excellent bifaciality. The structure of HJT allows both sides of the cell to absorb sunlight and generate electricity effectively. The bifacial gain of HJT cells can reach up to 30% in some cases. In contrast, although Topcon and Perc cells also have some bifacial capabilities, their performance is not as outstanding as that of HJT.

MAIN INFORMATIONS

Product	HJT microcrystalline solar cell
Format	N-type, 182.1mm*105.05mm ±0.15mm
Average Thickness (cell)	110+20/-10μm, 120+20/-10μm
Front Surface(-)/Back Surface(+)	18 Bus Bars




ELECTRICAL DATA (STC)

Class		255	256	257	258	259	260	261	262
Maximum Power	Pmpp [W]	4.87	4.89	4.91	4.93	4.95	4.97	4.99	5.01
Short Circuit Current	Isc [A]	7.63	7.64	7.64	7.65	7.65	7.66	7.68	7.69
Open Circuit Voltage	Voc [V]	0.754	0.754	0.755	0.755	0.755	0.756	0.755	0.756
Maximum Operating Current	Impp [A]	7.215	7.223	7.234	7.245	7.245	7.271	7.287	7.303
Maximum Operating Voltage	Vmpp [V]	0.667	0.679	0.681	0.682	0.682	0.685	0.685	0.686
Efficiency	η [%]	25.5	25.6	25.7	25.8	25.9	26.0	26.1	26.2

*STC: AM1.5, 1000W/m², 25°C.

IV CURE &SPECTRAL RESPONSE

TEMPERATURE COEFFICIENTS

Temperature Coefficient of Voc	-0.22%/°C			
Temperature Coefficient of Isc	0.04%/°C			
Temperature Coefficient of Pmax	-0.24%/°C			

CAUTIONS:

If the sealing foil around the cell boxes is damaged, broken or opened, we suggest that:

Store the cells in a dry and clean place at room temperature.

Process the cells within 10 days of opening the seal.

PACKAGE INFORMATIONS

PCS/BOX	144
BOX/CARTON	18
PCS/CARTON	2592

