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The tuberculosis (TB) epidemic in the Soviet and post-Soviet space represents a unique case in 
global epidemiology, shaped by the long-term interaction between coercive state structures, 
distorted surveillance systems, and inherited scientific paradigms. This article develops a 
mathematical framework for analyzing the dual system of TB control in the USSR—one that 
simultaneously generated conditions for sustained transmission within carceral institutions 
while publicly promoting a narrative of eradication. The study integrates historical 
epidemiology, structural analysis of Soviet penal institutions, and a review of mathematical 
models of TB and HIV/AIDS to construct a dual-population model incorporating totalitarian 
fragmentation, differential visibility of disease, and the asymmetric relationship between 
civilian and incarcerated populations. The article critically assesses limitations of classical 
compartmental models when applied to the post-Soviet TB context, emphasizing the cumulative 
effects of unreliable surveillance data, ideological distortions in diagnostic systems, and the 
inability of phthiriasis paradigms to account for structural determinants of infection. Employing 
elements of the morphological concept of epidemic diffusion, the proposed model reconstructs 
key mechanisms underlying epidemic persistence, including reinfection loops, suppression of 
epidemiological knowledge, and the emergence of a stable pathological equilibrium sustained 
by political–institutional dynamics. Mathematical analysis demonstrates the existence of a 
totalitarian fragmentation threshold beyond which TB becomes self-reinforcing, even under 
conditions of partial policy intervention. The model further explains why conventional 
elimination strategies fail in settings where penal systems act as chronic infectious reservoirs 
and where epidemiological visibility is systematically reduced. The findings underscore the 
necessity of incorporating institutional structures, knowledge asymmetries, and political 
constraints into models of infectious disease in the post-Soviet region. This study provides a 
theoretical foundation for future empirical research and offers a methodological framework for 
analyzing epidemics in environments characterized by data scarcity, institutional opacity, and 
structural violence. 
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Introduction 
 

Relevance of Research. The ongoing war in Ukraine has produced numerous 
humanitarian, political, and economic consequences, but one of its less examined 
dimensions concerns public health and the large-scale movement of populations from high-
burden regions into Europe. Millions of refugees have crossed borders since 2014, fleeing 
areas in which epidemiological indicators for infectious diseases—particularly tuberculosis 
(TB)—exceed European averages by an order of magnitude. This creates a complex 
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infectious interface between regions shaped by decades of post-Soviet health system 
deterioration and countries with comparatively low levels of infectious disease 
transmission. In such a context, it becomes crucial to obtain corrected, analytically 
meaningful estimates of disease burden and to understand the mechanisms underlying 
these processes. The present article represents an attempt to conceptualize and model 
these dynamics, recognizing the limitations of available data and the unique structural 
challenges posed by the post-Soviet infectious landscape. 

Object of Research. The object of this study is the long-term dynamics of 
tuberculosis indicators in the Soviet and post-Soviet spaces. These data are intrinsically 
problematic: underreported, inconsistent, influenced by administrative incentives, and 
embedded in a legacy of Soviet diagnostic and classificatory practices. This situation 
requires the development of methodological strategies for reconstructing infectious 
processes despite the unreliability of primary sources. Given the minimal likelihood that 
data quality will improve in the foreseeable future—due to conflict, institutional instability, 
and the collapse of public health infrastructures—there is a pressing need for research 
frameworks that permit analytical modeling under uncertainty. 

Purpose and Research Tasks. The purpose of this study is to establish a 
theoretically grounded and empirically informed understanding of infectious dynamics 
related to tuberculosis in the post-Soviet region. To achieve this, the article pursues two 
primary tasks: 

1. Critical analysis of the scholarly literature on mathematical modeling of infectious 
processes, with particular attention to modeling approaches applied to TB and 
HIV/AIDS. These two diseases, though fundamentally different biologically, 
share structural similarities within the post-Soviet context: long-term 
endemicity, profound social determinants, and a high degree of institutional 
distortion in reporting systems. 

2. Detailed examination of the Soviet penal system as a major incubator of infectious 
diseases, particularly tuberculosis. The “correctional labor colonies” (ITUs) of 
the USSR constituted dense, poorly ventilated, overcrowded environments with 
minimal access to medical care—conditions that created ideal infectious 
“amplifiers.” Understanding the historical and contemporary role of carceral 
institutions is essential for reconstructing transmission dynamics that continue 
to shape regional epidemics today. 

Methodology. The methodological foundation of this study is an initial version of a 
mathematical model tailored to the Soviet and post-Soviet infectious environment. This 
model is informed by what may be termed the “Soviet epistemology of disease”—a 
culturally specific framework that shaped diagnostic criteria, reporting practices, and 
conceptual interpretations of infection. Recognizing that Soviet medical statistics were 
often ideological rather than descriptive, the model integrates correction factors derived 
from structural inconsistencies, demographic discontinuities, and spatial anomalies across 
administrative territories. 

Empirical Data. The empirical basis for the study consists of materials collected 
and analyzed by the Laboratory of Geomonitoring and Forecasting of Epidemic Processes, 
which operated in Kyiv between 2007 and 2013 under the Institute of Cartography 
(Committee for Cartography, Geodesy, and Aerial Surveying of the Cabinet of Ministers of 
Ukraine). Although these datasets have been only partially published, they include detailed 
cartographic representations of TB incidence at multiple administrative levels of Ukraine. 
Examples include the series of regional maps by Tymoshenko et al. (2014–2020) and 
Tarkovsky et al. (2014) (Tymoshenko et al [2014-2020], Tarkovsky et al [2014]), which 
document spatial heterogeneities in TB burden across districts and provide valuable 
reference points for model calibration. 
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All available materials from post-Soviet states were utilized in this study, yet the 
author maintain a critical stance toward these sources in light of known issues of data 
reliability. Nonetheless, this body of information remains essential for establishing context 
and providing a necessary foundation for analysis. However, it must be emphasized that the 
most reliable data can only be obtained through direct field expeditions—specifically, by on-
site inspections of AIDS centers and tuberculosis hospitals—which yield firsthand evidence 
unobtainable from secondary sources. 

 

Research findings 
 

Mathematical Modeling of Infectious Processes Related to Tuberculosis:  
A Critical Review 

 
Mathematical modeling of TB epidemics has developed over nearly three decades, 

beginning with foundational compartmental models that sought to describe the “intrinsic” 
dynamics of TB in human populations. One of the earliest and most influential works by 
Blower and colleagues used a deterministic framework to show that TB epidemics can rise 
and fall over time scales of many decades, even in the absence of treatment, emphasizing 
the slow, endemic nature of TB and suggesting that part of the historical decline in high-
income countries reflected intrinsic epidemic behavior rather than solely chemotherapy or 
vaccination (Blower et al [1995]). Building on this, Porco et al. applied uncertainty and 
sensitivity analyses to similar models, demonstrating that a small number of key 
parameters – notably reactivation rates and transmission intensity – dominate long-term 
epidemic trajectories (Porco et al [1996]). 

A parallel line of work has focused on the natural history of infection and disease. 
Vynnycky and Fine used an age-structured model calibrated to historical data from England 
and Wales to disentangle primary disease, reactivation, and reinfection, showing how age-
dependent risks of progression strongly shape epidemic patterns (Vynnycky et al [1997]). 
More recently, Menzies et al. synthesized evidence on latent infection and progression risks, 
highlighting the wide uncertainty in parameters that underlie most TB transmission models 
(Menzies et al [2018]). Together, these studies show that many core quantities in TB 
modeling are only loosely constrained. 

At the global and programmatic level, Dye and Williams and their collaborators used 
mathematical models to evaluate the impact and limitations of the WHO DOTS strategy and 
to explore prospects for TB control under various scenarios of case detection and treatment 
(Dye et al [1998], Dye et al. [2010]). These frameworks made clear that even optimally 
implemented DOTS would be unlikely to eliminate TB in high-burden settings, helping to 
shift policy thinking toward broader determinants and new tools. Cohen and Murray 
extended the modeling paradigm to multidrug-resistant TB (MDR-TB), introducing multi-
strain models that explored how the relative fitness of resistant strains influences the 
likelihood of MDR epidemics (Cohen et al [2004]). 

As modeling matured, attention turned from simple homogeneous populations to 
more realistic structures. Hill et al. developed a model calibrated to US incidence trends in 
native-born and foreign-born populations, using it to assess the potential for TB elimination 
and the role of treatment of latent infection (Hill et al [2012]). Trauer et al. constructed a 
ten-compartment model incorporating BCG vaccination, waning protection, and reinfection 
to reproduce dynamics in highly endemic Asia-Pacific settings where HIV plays a limited 
role (Trauer et al [2014]). Dodd and colleagues recently proposed an age-structured model 
including HIV and antiretroviral therapy, calibrated to data from 12 African countries, using 
Bayesian methods to quantify uncertainty and estimate age-specific infection risks and the 
contribution of recent infection to incidence (Dodd et al [2023]). 
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Several reviews have synthesized the achievements and gaps in TB modeling. 
Zwerling et al. reviewed transmission models with an emphasis on diagnostics and novel 
therapies, arguing that models are most useful for comparing interventions and identifying 
key knowledge gaps rather than for precise prediction (Zwerling et al [2015]). Melsew and 
co-authors systematically examined how heterogeneous infectiousness is (or is not) 
captured in TB models, finding that most frameworks still rely on strong simplifying 
assumptions that underplay individual-level variability in transmission (Melsew et al 
[2020]). Fuller et al. have recently critiqued models of drug-resistant TB, highlighting how 
limited data and structural assumptions can bias projections for resistance control (Fuller 
et al [2024]). 

Beyond classical ordinary differential equation (ODE) models, newer approaches 
include models tailored to informal settlements and townships (Pienaar et al [2010]), 
models incorporating environmental and household risk factors (Kendall et al [2015]), and 
agent-based or microsimulation frameworks that attempt to reflect contact networks and 
spatial structure more explicitly (Bui et al [2024]). Within-host and multiscale models have 
also been reviewed, particularly for their contributions to understanding treatment and 
latency (Kirschner et al [2017]). 

Overall, the modeling literature on TB has succeeded in clarifying time scales, 
highlighting the importance of reactivation and reinfection, comparing intervention 
strategies, and quantifying uncertainty. At the same time, many authors emphasize that 
strong dependence on latent, poorly measured parameters, profound social and 
environmental determinants, and extreme heterogeneity of transmission limit the 
explanatory power of even sophisticated models (Zwerling et al [2015], Melsew et al [2020], 
Fuller et al [2024], Castillo-Chavez et al [2004], Okuonghae et al [2016], Tomczak et al [1998]). 
This tension between mathematical tractability and biosocial complexity is central to any 
critical assessment of TB epidemic modeling. 
 

Why Mathematical Models Explain HIV but Struggle with Tuberculosis:  
a Critical Review 

 
Mathematical models have become tools in infectious disease epidemiology, yet 

their impact has not been uniform across pathogens. For HIV, modeling has fundamentally 
reshaped scientific understanding and public health policy. In contrast, similar efforts in TB 
have produced more modest, largely descriptive insights. This asymmetry reflects deep 
structural differences between the infections rather than weaknesses in the modeling 
techniques themselves. 

HIV fits remarkably well into the classical framework of compartmental and 
network-based models developed by Anderson, May and others. Transmission can be 
described as a function of relatively well-measured behavioral variables—numbers of 
partners, types of sexual acts, needle-sharing patterns—and biologically quantifiable 
parameters such as per-contact transmission probability and viral load–dependent 
infectiousness (Anderson et al [1991],  Diekmann et al [2010], Garnett [2002]).  

The relationship between antiretroviral therapy, viral suppression and reduced 
transmission is robust and monotonic, allowing models to predict the population-level 
impact of treatment-as-prevention long before trials confirmed it (Fraser et al [2007], 
Granich et al [2009], Cohen et al [2011], Eaton et al [2012]). These models underpinned the 
“test and treat” paradigm and informed ambitious targets such as the UNAIDS 90–90–90 
goals (UNAIDS. 90–90–90 [2014]). In short, HIV spreads through discrete, countable events 
mediated by measurable behaviors and a single, time-varying biological state (viral load), 
which makes it highly amenable to mathematical abstraction. 

Tuberculosis presents a fundamentally different challenge. TB is characterized by 
long and variable latency, with a large fraction of the global population harboring latent 
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infection that may never progress to disease. Age-dependent risks of primary disease, 
reinfection, and late reactivation, as quantified by Vynnycky and Fine, make simple 
compartmental descriptions inherently unstable and sensitive to uncertain parameters 
(Vynnycky et al [1997]). Yet the empirical basis for these parameters remains weak, as 
systematic reviews of the natural history of untreated and latent TB demonstrate 
substantial uncertainty (Tiemersma et al [2011]). 

Moreover, TB is deeply embedded in social and environmental contexts. 
Overcrowding, malnutrition, migration, incarceration, and poverty act as powerful 
determinants of both infection and disease progression (Lönnroth et al [2009]). These 
determinants are heterogeneous in space and time and cannot be easily collapsed into a 
single “effective contact rate” without losing critical structure. Models struggle to represent 
such biosocial complexity, and sensitivity analyses repeatedly show that predictions are 
highly dependent on poorly constrained social and programmatic parameters (Dowdy et al 
[2013], Melsew et al [2020]). Heterogeneity in infectiousness—where a minority of patients 
may drive transmission in poorly ventilated, high-risk environments—further undermines 
the assumption of homogeneous mixing that underlies most analytic frameworks (Kirschner 
et al [2017]). 

At the same time, TB epidemics unfold slowly. Intervention effects may take 5–20 
years to become visible, limiting opportunities for rapid empirical validation of model 
predictions. In contrast, HIV incidence responds more quickly to changes in prevention and 
treatment, enabling iterative refinement of models and policy in near-real time. For TB, even 
sophisticated multiscale and within-host models, though valuable for exploring latency and 
treatment, have not yet yielded decisive shifts in global strategy. 

In summary, mathematical models have been extraordinarily successful for HIV 
because the infection is behaviorally mediated, biologically quantifiable and relatively fast-
moving. TB, by contrast, is slow, socially entangled and driven by latent, hard-to-measure 
processes. As a result, TB models are most powerful as tools for scenario comparison and 
resource planning, but they rarely achieve the explanatory or predictive depth seen in HIV 
modeling. 

 
Why Mathematical Modeling of Tuberculosis  
Is Especially Critical for the Post-Soviet Space 

 
The question of whether TB can be effectively modeled has long generated debate, 

given the conceptual and empirical difficulties inherent in the disease. Yet despite these 
limitations, mathematical modeling remains indispensable—particularly in the post-Soviet 
space, where infectious, social, political, and data-quality factors converge to create an 
urgent need for analytical tools capable of reconstructing and forecasting infectious 
processes. In this context, the value of modeling lies not in perfect prediction but in enabling 
rational inference under conditions of uncertainty, especially where traditional surveillance 
systems are inadequate. 

The first reason modeling is essential in the post-Soviet space is the exceptional 
intensity of TB transmission observed across the region. Incidence rates in many former 
Soviet republics exceed those of Western Europe by an order of magnitude. These 
persistently elevated burdens stem from structural determinants—poverty, deteriorating 
health systems, high rates of incarceration, widespread alcoholism, and the legacy of Soviet 
institutional arrangements—that shape exposure, infection, and disease progression. High-
burden settings with long and complex epidemic histories cannot be adequately understood 
through descriptive statistics alone. Mathematical models provide the means to analyze 
how transmission dynamics unfold within such structurally unstable environments and to 
identify the latent parameters driving epidemic persistence. 
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A second reason is geopolitical. The post-Soviet region has been a generator of 
recurrent conflicts and large-scale population displacements, with direct implications for 
European public health. The ongoing war in Ukraine, which began in 2014 and continues 
today, has produced millions of refugees moving from areas where TB incidence and MDR-
TB rates substantially exceed European averages. Migration flows from regions with a 
significant infectious burden create a spatial linkage between the post-Soviet epidemic and 
EU countries. Mathematical models are uniquely suited to evaluating how such population 
movements may reshape transmission networks, alter age and risk structures, and impose 
new pressures on health systems across borders. In this sense, modeling TB in the post-
Soviet region is not simply a regional concern but an instrument of European health 
security. 

A third factor necessitating modeling is the pervasive unreliability of TB surveillance 
data across much of the post-Soviet space. Underreporting, inconsistent diagnostic criteria, 
fragmentation of health information systems, and the continued influence of what may be 
termed “Soviet epistemology” in disease classification all contribute to systematic 
distortions in epidemiological indicators. The cultural legacy of the Soviet medical system—
where certain diseases, including TB, were ideologically stigmatized or administratively 
manipulated—continues to shape data quality today. Under such conditions, mathematical 
modeling provides a corrective framework: it enables the reconstruction of plausible 
epidemic curves, estimation of true incidence, and identification of spatial heterogeneities 
even when raw data are incomplete or biased. 

One methodological strategy particularly applicable to this region is the “key-point 
method,” widely used in geographical science. Here, well-studied territories serve as 
reference “keys” for inferring dynamics in poorly documented regions. When calibrated 
with high-quality local data from selected subpopulations—urban centers, prisons, migrant 
communities—mathematical models can extrapolate broader patterns across the larger 
post-Soviet landscape. Although imperfect, this approach yields insights that cannot be 
obtained by conventional surveillance tools alone and provides decision-makers with the 
best available estimates under constraints of uncertainty. 

Mathematical modeling is further justified by the temporal depth of available 
historical information. The Soviet and post-Soviet TB epidemic spans more than a century, 
providing a large numerical basis for analysis. While interpretations of historical events 
may vary, the volume of infectious, demographic, and archival material is substantial. 
Learning to structure, parameterize, and critically interpret these data requires formal 
quantitative frameworks that can link historical processes to contemporary patterns. 

Finally, modeling is becoming more powerful due to recent theoretical advances, 
such as the morphological concept of epidemics developed by Professor Dmitry Nikolaenko 
(Nikolaenko et al [2009], Nikolaenko [2009], Nikolaenko [2010], Nikolaenko [2011], 
Nikolaenko et al [2011]). This framework conceptualizes TB and HIV/AIDS epidemics as 
diffusion processes characterized by identifiable spatial–temporal morphologies. 
Incorporating these ideas into mathematical models allows for more accurate 
representation of epidemic propagation fronts, local amplifiers of transmission, and 
structural constraints inherent to the post-Soviet context. Diffusion-based approaches 
permit systematic exploration of alternative epidemic trajectories, enabling researchers to 
investigate how environmental, political, and social shocks modulate transmission 
dynamics. 

In sum, mathematical modeling in the Soviet and post-Soviet TB context plays a 
necessarily auxiliary but indispensable role. Researchers are acutely aware of the 
imperfections of available data, yet abstaining from modeling is not a viable alternative. 
Models provide the only coherent framework through which heterogeneous historical 
information, uncertain surveillance data, and complex socio-political processes can be 
integrated into an interpretable and actionable understanding of TB dynamics. Even if 
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models cannot fully overcome the limitations of the underlying data, they offer structured 
reasoning where none would otherwise be possible. 

THE DUAL-POPULATION EPIDEMIOLOGICAL MODEL 

Why tuberculosis in the USSR requires a dual-population model 
 
Standard epidemiological models assume uniform surveillance, uniform policy response, 
and symmetric visibility across all segments of society. In the Soviet Union, none of these 
conditions held. Two populations existed simultaneously: 

1. Civilian population 

• monitored, 
• counted, 
• studied, 
• publicly discussed, 
• used to measure success of the socialist healthcare project. 

2. Prison population 

• unmonitored, 
• uncounted, 
• scientifically inaccessible, 
• ideologically inconvenient, 
• excluded from official statistics. 

Yet these two populations were infectious coupled through: 

• arrest flow: civilians → prisons 
• release flow: prisons → civilians 
• family visits, informal contacts, prison guards 

Thus, prisons acted as infectious sources, while civilians acted as infectious sinks. It is a type 
of "fireplace" that maintains a continuous flame. The Soviet state has consistently 
maintained a controlled environment for the cultivation of tuberculosis and various other 
infectious diseases. 

Central asymmetries 

Epidemiological factor Civilian population Prison population 

Crowding Low/Moderate Extreme 

Nutrition Moderate Poor 

Medical access Good Minimal 

Treatment continuity High Rare 

Surveillance Present Absent 

TB intensity Medium Very High 
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Visibility Full Zero 

Policy responsiveness Medium Near Zero 

Treatment Compulsory, forced Refusal of treatment 

Deliberately exposing oneself 
to tuberculosis 

Entirely unprecedented This is a standard 
procedure 

This asymmetry forces the model to treat the penal subsystem as a structurally different 
compartment, not a small correction. 

Transmission flows 

1. Flow from civilians into prisons 

Healthy civilians can acquire TB in prison. Infected civilians can become infectious faster 
due to deprivation. 

This is the term: 

 
Formula 1. 

2. Flow from prisons back to civilians 

Released prisoners often carry: 

• untreated TB 
• partially treated TB 
• MDR-TB 
• latent infections 

This appears as: 

 
Formula 2.  

Political asymmetry embedded in the model 

Political visibility affects epidemiology. 

• Civilian TB triggers policy responses. 
• Prison TB triggers political denial. 

Thus, political structure alters the dynamics: 

Totalitarian fragmentation reduces the effective strength of health policy 
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Formula 6 

 

 
Formula 7 

Totalitarian fragmentation inhibits knowledge formation 

 
Formula 4 

 
Formula 5 

Totalitarian fragmentation grows when epidemics worsen 

 
Formula 3 

This makes the penal epidemic self-reinforcing. 

Emergence of the pathological equilibrium 

If: 

• penal TB is high, 
• totalitarian fragmentation increases, 
• knowledge declines, 
• policy collapses, 
• reinfection flows persist, 

then the system converges to: 

• high 𝐸𝑝
∗, 

• moderate 𝐸𝑐
∗, 

• high 𝐵∗, 
• persistent reinfection. 

This is the historical Soviet pattern. 

MATHEMATICAL FORMULATION 

This section formalizes all mechanisms introduced above. We present the full dynamic 
system: 

• two epidemic compartments, 
• two knowledge compartments, 
• two policy compartments, 
• one blindness variable. 
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Then we reduce the system for analytical tractability. 

Full epidemic system 

1. Prison TB equation 

 
Formula 1 

This includes: 

• logistic growth 
• civilian inflow 
• natural removal 
• policy removal scaled by visibility (1–B) 

2. Civilian TB equation 

 
Formula 2 

This includes: 

• logistic growth 
• reinfection from prisons 
• civilian policy effort scaled by visibility 

Totalitarian fragmentation dynamics 

Totalitarian fragmentation increases when: 

• prison epidemic increases, 
• civilian epidemic increases, 
• ideological pressure increases. 

Totalitarian fragmentation decreases through: 

• knowledge accumulation, 
• information leakage, 
• elite turnover. 

 
Formula 3 

Knowledge dynamics 

Prison knowledge 
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Formula 4 

Civilian knowledge 

 
Formula 5 

Totalitarian fragmentation suppresses knowledge by coefficients σ and κ. 

Policy dynamics 

Prison policy 

 
Formula 6. 

Civilian policy 

 
Formula 7. 

Totalitarian fragmentation weakens policy directly. 

Reduced model 

For formal analysis, we reduce the system: 

• combine knowledge + policy into effective removal rates, 
• maintain totalitarian fragmentation as explicit variable, 
• keep dual epidemic structure. 

 
Formula 8. 

 

 
Formula 9. 

 

 
Formula 10. 

This reduced 3-variable system is sufficient to capture: 

• epidemic persistence 
• totalitarian fragmentation threshold 
• pathological equilibrium 
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• hysteresis 

Jacobian analysis 

The Jacobian matrix of the reduced epidemic subsystem is: 

 
Formula 11. 

From this, we derive: 

• Trace(J): →     Formula 12. 
• Det(J): →    Formula 13. 

The dominant eigenvalue: 

 
Formula 14. 

is crucial for stability. 

Blindness threshold 

The totalitarian fragmentation threshold is defined by: 

 
Formula 15. 

If: 

• 𝜆max(𝐵crit) < 0 → epidemic dies out 
• 𝜆max(𝐵crit) > 0 → epidemic persists 

Stability conditions: 

 
Formula 16. 

 

 
Formula 17. 

Equilibrium structure 

Totalitarian fragmentation at equilibrium: 

 
Formula 18. 
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Epidemic equilibrium conditions: 

 
Formula 19. 

 

 
Formula 20. 

The penal equilibrium must satisfy: 

• 𝐸𝑝
∗ > 0 

• reinfection from prisons remains active 
• totalitarian fragmentation stays high 

The reinfection loop: 

 
Formula 21. 

prevents collapse of the epidemic. 

FORMAL PROPERTIES OF THE SYSTEM 

1. Positivity and invariance 

→ [  ] Formula 22 

through  

[   ] Formula 25 
 

show that: 

• the system remains biologically meaningful, 
• variables never become negative. 

2. Existence of equilibria 

Using Brouwer: 
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Formula 26–28. 

there must exist at least one equilibrium in the positive orthant. 

3. Stability of the disease-free equilibrium 

The system is disease-free only when: 

• totalitarian fragmentation is low, 
• removal rates exceed transmission rates. 

Linearization: 

 
Formula 29. 

 

 
Formula 30. 

Stability criterion: 

 
Formula 31. 

4. Totalitarian fragmentation threshold 

The critical totalitarian fragmentation value: 

 
Formula 32. 

marks the transition from: 

• controlled epidemics 
→ to 

• persistent epidemics. 

5. Conditions for pathological equilibrium 

If: 

• 𝜆𝑝 large, 

• 𝛾 small, 
• 𝛼𝑝 small, 

• reinfection flows strong, 

then: 
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Formula 33. 

and the system enters a stable endemic equilibrium: 

 
Formula 35. 

Stability inequality: 

 
Formula 36. 

Thus the Soviet TB regime is mathematically predictable. 

APPENDIX A: FORMAL PROOFS AND MATHEMATICAL FOUNDATIONS 

This appendix provides the formal mathematical treatment of the dual-population model 
with totalitarian blindness. We work with the reduced 3-equation system introduced in the 
main text: 

 
Formula 8. 

 

 
Formula 9. 

 

 
Formula 10. 

These are reproduced below for readability: 

• Prison epidemic equation 
• Civilian epidemic equation 
• Totalitarian fragmentation dynamics equation 

Definitions and notation follow the main article. 

A.1. Positivity and Forward Invariance 

Theorem A.1 (Positivity). 

If 

𝐸𝑝(0) ≥ 0, 𝐸𝑐(0) ≥ 0, 𝐵(0) ≥ 0, 

 

then 
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𝐸𝑝(𝑡),  𝐸𝑐(𝑡),  𝐵(𝑡) ≥ 0∀𝑡 ≥ 0. 

 

Proof. 

1. At the boundary 𝐸𝑝 = 0: 

𝑑𝐸𝑝
𝑑𝑡

∣𝐸𝑝=0= 𝑎𝐸𝑐 ≥ 0, 

 

which implies trajectories cannot cross into 𝐸𝑝 < 0. 

 

 
Formula 23. 

2. At the boundary 𝐸𝑐 = 0: 

𝑑𝐸𝑐
𝑑𝑡

∣𝐸𝑐=0= 𝑟𝐸𝑝 ≥ 0. 

Formula 24. 

3. At the boundary 𝐵 = 0: 

𝑑𝐵

𝑑𝑡
∣𝐵=0= 𝜆𝑝𝐸𝑝 + 𝜆𝑐𝐸𝑐 + 𝜇 > 0. 

Formula 25. 

Thus the vector field always points inward on the boundary of the positive orthant. 
Therefore the domain 

Ω = {(𝐸𝑝 , 𝐸𝑐 , 𝐵) ∣ 𝐸𝑝 , 𝐸𝑐 , 𝐵 ≥ 0} 

 

is forward-invariant. ∎ 

A.2. Existence of Equilibria 

We rewrite the reduced system compactly as: 

 
Formula 26. 

Let Ω be a sufficiently large closed box in ℝ+
3 . The vector field satisfies: 
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Formula 27. 

Theorem A.2. 

The system possesses at least one equilibrium in Ω. 

Proof. 

• The vector field is continuous in Ω. 
• Logistic saturation ensures boundedness. 
• Totalitarian fragmentation dynamics contain a linear decay term −γB. 
• The vector field points inward on ∂Ω. 

By Brouwer’s Fixed Point Theorem: 

 
Formula 28. 

Thus an equilibrium exists. ∎ 

A.3. Characterization of the Disease-Free Equilibrium 

The disease-free equilibrium is: 

(𝐸𝑝, 𝐸𝑐 , 𝐵) = (0,  0,  
𝜇

𝛾
). 

 

Linearizing the epidemic subsystem gives the Jacobian: 

 
Formula 11. 

Associated objects: 

• Trace(J): →    Formula 12. 
• Det(J): →   Formula 13. 

The dominant eigenvalue: 

 
Formula 14. 

governs stability. 

Theorem A.3. 
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The disease-free equilibrium is locally asymptotically stable if and only if: 

 
Formula 16. 

and unstable if: 

 
Formula 17. 

Proof. 

• The linearized system has characteristic polynomial: 

 
Formula 30. 

• The equilibrium is stable if both eigenvalues have negative real parts. 
• This requires: 

 
Formula 31. 

But since parameters enter monotonically through totalitarian fragmentation, the sign 
of 𝜆max(𝐵) alone determines stability (Perron–Frobenius). 

Thus the stated conditions follow. ∎ 

A.4. Totalitarian fragmentation Threshold 

Define the totalitarian fragmentation threshold 𝐵crit by: 

 
Formula 15. 

Proposition A.4. 

The disease-free equilibrium is stable for 𝐵 < 𝐵crit and unstable for 𝐵 > 𝐵crit. 

Proof. 

• Eigenvalues of a cooperative matrix increase in response to increases in its entries. 
• Increasing B reduces effective removal rates. 
• This increases the diagonal of J(B), which increases the spectral radius. 
• By continuity of the dominant eigenvalue, the equation: 

 
Formula 32. 

has a unique solution. ∎ 
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A.5. Existence of a Pathological Endemic Equilibrium 

We show that high totalitarian fragmentation forces the system into a persistent epidemic. 

Theorem A.5 (Existence of pathological equilibrium). 

Assume: 

• 𝜆𝑝 large (prison epidemic strongly increases totalitarian fragmentation), 

• 𝛾 small (totalitarian fragmentation decays slowly), 
• 𝛼𝑝 small (prison policy weak), 

• a and r strictly positive (bidirectional flows). 

Then the system admits an equilibrium: 

 
Formula 35. 

with: 

 
Formula 33. 

(i.e., totalitarian fragmentation at equilibrium exceeds the critical threshold). 

Proof. 

1. If 𝐵∗ > 𝐵crit, the disease-free equilibrium is unstable. 
2. By A.2, at least one equilibrium exists. 
3. Since the disease-free equilibrium is unstable, the remaining equilibrium must 

satisfy: 

• 𝐸𝑝
∗ > 0 

• 𝐸𝑐
∗ > 0 

4. Totalitarian fragmentation equilibrium condition: 

 
Formula 18. 

Since 𝜆𝑝 dominates, small E_p produces large B*. 

5. Therefore B*>B_crit. 

Thus a positive endemic equilibrium necessarily exists. ∎ 

A.6. Stability of the Pathological Equilibrium 

Theorem A.6. 
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The pathological equilibrium described above is locally asymptotically stable. 

Proof (sketch). 

• For large totalitarian fragmentation, policy terms collapse, producing nearly 
unregulated epidemic growth. 

• Logistic terms prevent divergence. 
• Totalitarian fragmentation grows with epidemic intensity, reinforcing high B. 
• Thus eigenvalues at the equilibrium satisfy: 

 
Formula 36. 

Hence the equilibrium is stable. ∎ 

A.7. Hysteresis and Non-Ergodicity 

Theorem A.7 (Hysteresis). 

If 

𝐵(𝑡0) > 𝐵crit, 
 

then even if B is later reduced to near Bcrit, epidemic levels 𝐸𝑝 and 𝐸𝑐 may not return to 

zero. 

Proof. 

• High B induces high E. 
• High E regenerates high B through: 

 
Formula 10. 

• The system enters a loop: 

 
Formula 34. 

Thus, the system is path-dependent, not ergodic. 
Simply reducing totalitarian fragmentation is insufficient once the epidemic reservoir has 
been formed. ∎ 

A.8. Summary 

Appendix A proves that: 

1. The system remains in the biologically meaningful space. 
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2. An equilibrium always exists. 
3. Stability of the disease-free equilibrium is controlled by totalitarian fragmentation. 
4. Above the totalitarian fragmentation threshold, the system converges to a 

pathological equilibrium. 
5. This equilibrium is stable, persistent, and self-reinforcing. 
6. Hysteresis explains the post-Soviet TB and MDR-TB explosion. 

Conclusions 

1. Mathematical modeling of infectious processes in tuberculosis serves a function that is 
not limited to strict scientific explanation, and even less to the precise forecasting of the 
epidemic process. Its primary role lies in the correction and reconstruction of existing 
data arrays. These datasets are persistently problematic, and mathematical modeling 
provides one of the few mechanisms through which at least part of these deficiencies 
can be addressed. 

2. Depending on the socio-cultural environment and the specific characteristics of a given 
state, the functions of mathematical modeling related to tuberculosis infectious 
processes will differ substantially. The quality of epidemiological data varies 
dramatically across the world. There is, and cannot be, any universal framework 
applicable to all contexts. 

3. Introducing a theoretical framework for this dual system of tuberculosis control—one 
involving A. the cultivation of tuberculosis and B. the heroic fight against tuberculosis—
provides substantial benefits for mathematical modeling of the infectious process. It 
allows for the development of far more realistic representations of what has transpired 
over more than a century across the Russian Empire, the USSR, and the post-Soviet 
states. 

4. In mathematical modeling of the tuberculosis infectious process, and in the many 
failures associated with it, an exceptionally important role is played by the initial 
conceptualization of what tuberculosis is and how the infectious process develops. It 
can be stated that the theoretical foundations of tuberculosis epidemiology are 
fundamentally flawed. The issue lies not only— and perhaps not even primarily— in the 
poor quality of empirical baseline data. The deeper problem is that the dominant 
understanding of the epidemic is shaped almost exclusively by the perspective of 
phthisiatricians, whose conceptual framework captures only a limited segment of the 
infectious process. These dominant representations categorically fail to reflect reality. 
This may be one of the principal reasons for the persistent failures in mathematical 
modeling of the tuberculosis epidemic. 

5. Our approach is based on the morphological concept of the HIV/AIDS and tuberculosis 
pandemic developed by Dmitry Nikolaenko. This concept was first articulated around 
2005. It draws not only on medical knowledge about infectious diseases, but— 
fundamentally— on spatio-temporal analysis and long-term trends in the structural 
transformation of population morbidity. The terms “morphology of the spatio-temporal 
process” and “diffusion process” are critically important here. This constitutes a 
fundamentally new explanatory approach. As a result, mathematical modeling is 
grounded in a far more coherent foundation than the traditional phthisiatric 
perspective and the endless references to poverty, alcoholism, and other reductive 
explanatory tropes. 

6. Recognizing that the problem lies not only in low-quality data but also in the inadequacy 
of the theoretical framework underpinning the understanding of the infectious process 
is highly significant. Specialists in mathematical modeling often suffer from criticism by 
physicians and from their categorical prescriptions. Modelers are treated merely as 
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“assistants”— at least this has been the case in Ukraine. Throughout our work, the staff 
of the Laboratory for Geomonitoring and Forecasting of Epidemic Processes were 
repeatedly told that “your role is to help us.” No criticism and no theory were welcome. 
Thus, the failure of tuberculosis modeling is largely attributable to the conservatism of 
the phthisiatric community and its unwillingness to hear well-founded critique or 
accept theoretical extensions. Mathematical modeling of this infectious process is not a 
“practical aid” to phthisiatry. It is an attempt to explain the unfolding infectious process 
from a new scientific perspective. 

7. It is essential that work on mathematical modeling of the infectious process remain 
independent from the phthisiatric expert community. A long experience of attempted 
collaboration demonstrated that genuine cooperation does not materialize. Numerous 
constraints are imposed on theoretical analysis and modeling. Modeling is viewed solely 
as an auxiliary tool for practical phthisiatric work. Nothing else is considered necessary 
by physicians. However, phthisiatrists are not the only experts concerned with this 
diffusion process. 
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