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The tuberculosis (TB) epidemic in the Soviet and post-Soviet space represents a unique case in
global epidemiology, shaped by the long-term interaction between coercive state structures,
distorted surveillance systems, and inherited scientific paradigms. This article develops a
mathematical framework for analyzing the dual system of TB control in the USSR—one that
simultaneously generated conditions for sustained transmission within carceral institutions
while publicly promoting a narrative of eradication. The study integrates historical
epidemiology, structural analysis of Soviet penal institutions, and a review of mathematical
models of TB and HIV/AIDS to construct a dual-population model incorporating totalitarian
fragmentation, differential visibility of disease, and the asymmetric relationship between
civilian and incarcerated populations. The article critically assesses limitations of classical
compartmental models when applied to the post-Soviet TB context, emphasizing the cumulative
effects of unreliable surveillance data, ideological distortions in diagnostic systems, and the
inability of phthiriasis paradigms to account for structural determinants of infection. Employing
elements of the morphological concept of epidemic diffusion, the proposed model reconstructs
key mechanisms underlying epidemic persistence, including reinfection loops, suppression of
epidemiological knowledge, and the emergence of a stable pathological equilibrium sustained
by political-institutional dynamics. Mathematical analysis demonstrates the existence of a
totalitarian fragmentation threshold beyond which TB becomes self-reinforcing, even under
conditions of partial policy intervention. The model further explains why conventional
elimination strategies fail in settings where penal systems act as chronic infectious reservoirs
and where epidemiological visibility is systematically reduced. The findings underscore the
necessity of incorporating institutional structures, knowledge asymmetries, and political
constraints into models of infectious disease in the post-Soviet region. This study provides a
theoretical foundation for future empirical research and offers a methodological framework for
analyzing epidemics in environments characterized by data scarcity, institutional opacity, and
structural violence.
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Introduction

Relevance of Research. The ongoing war in Ukraine has produced numerous
humanitarian, political, and economic consequences, but one of its less examined
dimensions concerns public health and the large-scale movement of populations from high-
burden regions into Europe. Millions of refugees have crossed borders since 2014, fleeing
areas in which epidemiological indicators for infectious diseases—particularly tuberculosis
(TB)—exceed European averages by an order of magnitude. This creates a complex
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infectious interface between regions shaped by decades of post-Soviet health system
deterioration and countries with comparatively low levels of infectious disease
transmission. In such a context, it becomes crucial to obtain corrected, analytically
meaningful estimates of disease burden and to understand the mechanisms underlying
these processes. The present article represents an attempt to conceptualize and model
these dynamics, recognizing the limitations of available data and the unique structural
challenges posed by the post-Soviet infectious landscape.

Object of Research. The object of this study is the long-term dynamics of
tuberculosis indicators in the Soviet and post-Soviet spaces. These data are intrinsically
problematic: underreported, inconsistent, influenced by administrative incentives, and
embedded in a legacy of Soviet diagnostic and classificatory practices. This situation
requires the development of methodological strategies for reconstructing infectious
processes despite the unreliability of primary sources. Given the minimal likelihood that
data quality will improve in the foreseeable future—due to conflict, institutional instability,
and the collapse of public health infrastructures—there is a pressing need for research
frameworks that permit analytical modeling under uncertainty.

Purpose and Research Tasks. The purpose of this study is to establish a
theoretically grounded and empirically informed understanding of infectious dynamics
related to tuberculosis in the post-Soviet region. To achieve this, the article pursues two
primary tasks:

1. Critical analysis of the scholarly literature on mathematical modeling of infectious

processes, with particular attention to modeling approaches applied to TB and
HIV/AIDS. These two diseases, though fundamentally different biologically,
share structural similarities within the post-Soviet context: long-term
endemicity, profound social determinants, and a high degree of institutional
distortion in reporting systems.

2. Detailed examination of the Soviet penal system as a major incubator of infectious
diseases, particularly tuberculosis. The “correctional labor colonies” (ITUs) of
the USSR constituted dense, poorly ventilated, overcrowded environments with
minimal access to medical care—conditions that created ideal infectious
“amplifiers.” Understanding the historical and contemporary role of carceral
institutions is essential for reconstructing transmission dynamics that continue
to shape regional epidemics today.

Methodology. The methodological foundation of this study is an initial version of a
mathematical model tailored to the Soviet and post-Soviet infectious environment. This
model is informed by what may be termed the “Soviet epistemology of disease”—a
culturally specific framework that shaped diagnostic criteria, reporting practices, and
conceptual interpretations of infection. Recognizing that Soviet medical statistics were
often ideological rather than descriptive, the model integrates correction factors derived
from structural inconsistencies, demographic discontinuities, and spatial anomalies across
administrative territories.

Empirical Data. The empirical basis for the study consists of materials collected
and analyzed by the Laboratory of Geomonitoring and Forecasting of Epidemic Processes,
which operated in Kyiv between 2007 and 2013 under the Institute of Cartography
(Committee for Cartography, Geodesy, and Aerial Surveying of the Cabinet of Ministers of
Ukraine). Although these datasets have been only partially published, they include detailed
cartographic representations of TB incidence at multiple administrative levels of Ukraine.
Examples include the series of regional maps by Tymoshenko et al. (2014-2020) and
Tarkovsky et al. (2014) (Tymoshenko et al [2014-2020], Tarkovsky et al [2014]), which
document spatial heterogeneities in TB burden across districts and provide valuable
reference points for model calibration.
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All available materials from post-Soviet states were utilized in this study, yet the
author maintain a critical stance toward these sources in light of known issues of data
reliability. Nonetheless, this body of information remains essential for establishing context
and providing a necessary foundation for analysis. However, it must be emphasized that the
most reliable data can only be obtained through direct field expeditions—specifically, by on-
site inspections of AIDS centers and tuberculosis hospitals—which yield firsthand evidence
unobtainable from secondary sources.

Research findings

Mathematical Modeling of Infectious Processes Related to Tuberculosis:
A Critical Review

Mathematical modeling of TB epidemics has developed over nearly three decades,
beginning with foundational compartmental models that sought to describe the “intrinsic”
dynamics of TB in human populations. One of the earliest and most influential works by
Blower and colleagues used a deterministic framework to show that TB epidemics can rise
and fall over time scales of many decades, even in the absence of treatment, emphasizing
the slow, endemic nature of TB and suggesting that part of the historical decline in high-
income countries reflected intrinsic epidemic behavior rather than solely chemotherapy or
vaccination (Blower et al [1995]). Building on this, Porco et al. applied uncertainty and
sensitivity analyses to similar models, demonstrating that a small number of key
parameters - notably reactivation rates and transmission intensity - dominate long-term
epidemic trajectories (Porco et al [1996]).

A parallel line of work has focused on the natural history of infection and disease.
Vynnycky and Fine used an age-structured model calibrated to historical data from England
and Wales to disentangle primary disease, reactivation, and reinfection, showing how age-
dependent risks of progression strongly shape epidemic patterns (Vynnycky et al [1997]).
More recently, Menzies et al. synthesized evidence on latent infection and progression risks,
highlighting the wide uncertainty in parameters that underlie most TB transmission models
(Menzies et al [2018]). Together, these studies show that many core quantities in TB
modeling are only loosely constrained.

At the global and programmatic level, Dye and Williams and their collaborators used
mathematical models to evaluate the impact and limitations of the WHO DOTS strategy and
to explore prospects for TB control under various scenarios of case detection and treatment
(Dye et al [1998], Dye et al. [2010]). These frameworks made clear that even optimally
implemented DOTS would be unlikely to eliminate TB in high-burden settings, helping to
shift policy thinking toward broader determinants and new tools. Cohen and Murray
extended the modeling paradigm to multidrug-resistant TB (MDR-TB), introducing multi-
strain models that explored how the relative fitness of resistant strains influences the
likelihood of MDR epidemics (Cohen et al [2004]).

As modeling matured, attention turned from simple homogeneous populations to
more realistic structures. Hill et al. developed a model calibrated to US incidence trends in
native-born and foreign-born populations, using it to assess the potential for TB elimination
and the role of treatment of latent infection (Hill et al [2012]). Trauer et al. constructed a
ten-compartment model incorporating BCG vaccination, waning protection, and reinfection
to reproduce dynamics in highly endemic Asia-Pacific settings where HIV plays a limited
role (Trauer et al [2014]). Dodd and colleagues recently proposed an age-structured model
including HIV and antiretroviral therapy, calibrated to data from 12 African countries, using
Bayesian methods to quantify uncertainty and estimate age-specific infection risks and the
contribution of recent infection to incidence (Dodd et al [2023]).
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Several reviews have synthesized the achievements and gaps in TB modeling.
Zwerling et al. reviewed transmission models with an emphasis on diagnostics and novel
therapies, arguing that models are most useful for comparing interventions and identifying
key knowledge gaps rather than for precise prediction (Zwerling et al [2015]). Melsew and
co-authors systematically examined how heterogeneous infectiousness is (or is not)
captured in TB models, finding that most frameworks still rely on strong simplifying
assumptions that underplay individual-level variability in transmission (Melsew et al
[2020]). Fuller et al. have recently critiqued models of drug-resistant TB, highlighting how
limited data and structural assumptions can bias projections for resistance control (Fuller
etal [2024]).

Beyond classical ordinary differential equation (ODE) models, newer approaches
include models tailored to informal settlements and townships (Pienaar et al [2010]),
models incorporating environmental and household risk factors (Kendall et al [2015]), and
agent-based or microsimulation frameworks that attempt to reflect contact networks and
spatial structure more explicitly (Bui et al [2024]). Within-host and multiscale models have
also been reviewed, particularly for their contributions to understanding treatment and
latency (Kirschner et al [2017]).

Overall, the modeling literature on TB has succeeded in clarifying time scales,
highlighting the importance of reactivation and reinfection, comparing intervention
strategies, and quantifying uncertainty. At the same time, many authors emphasize that
strong dependence on latent, poorly measured parameters, profound social and
environmental determinants, and extreme heterogeneity of transmission limit the
explanatory power of even sophisticated models (Zwerling et al [2015], Melsew et al [2020)],
Fuller et al [2024], Castillo-Chavez et al [2004], Okuonghae et al [2016], Tomczak et al [1998]).
This tension between mathematical tractability and biosocial complexity is central to any
critical assessment of TB epidemic modeling.

Why Mathematical Models Explain HIV but Struggle with Tuberculosis:
a Critical Review

Mathematical models have become tools in infectious disease epidemiology, yet
their impact has not been uniform across pathogens. For HIV, modeling has fundamentally
reshaped scientific understanding and public health policy. In contrast, similar efforts in TB
have produced more modest, largely descriptive insights. This asymmetry reflects deep
structural differences between the infections rather than weaknesses in the modeling
techniques themselves.

HIV fits remarkably well into the classical framework of compartmental and
network-based models developed by Anderson, May and others. Transmission can be
described as a function of relatively well-measured behavioral variables—numbers of
partners, types of sexual acts, needle-sharing patterns—and biologically quantifiable
parameters such as per-contact transmission probability and viral load-dependent
infectiousness (Anderson et al [1991], Diekmann et al [2010], Garnett [2002]).

The relationship between antiretroviral therapy, viral suppression and reduced
transmission is robust and monotonic, allowing models to predict the population-level
impact of treatment-as-prevention long before trials confirmed it (Fraser et al [2007],
Granich et al [2009], Cohen et al [2011], Eaton et al [2012]). These models underpinned the
“test and treat” paradigm and informed ambitious targets such as the UNAIDS 90-90-90
goals (UNAIDS. 90-90-90 [2014]). In short, HIV spreads through discrete, countable events
mediated by measurable behaviors and a single, time-varying biological state (viral load),
which makes it highly amenable to mathematical abstraction.

Tuberculosis presents a fundamentally different challenge. TB is characterized by
long and variable latency, with a large fraction of the global population harboring latent
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infection that may never progress to disease. Age-dependent risks of primary disease,
reinfection, and late reactivation, as quantified by Vynnycky and Fine, make simple
compartmental descriptions inherently unstable and sensitive to uncertain parameters
(Vynnycky et al [1997]). Yet the empirical basis for these parameters remains weak, as
systematic reviews of the natural history of untreated and latent TB demonstrate
substantial uncertainty (Tiemersma et al [2011]).

Moreover, TB is deeply embedded in social and environmental contexts.
Overcrowding, malnutrition, migration, incarceration, and poverty act as powerful
determinants of both infection and disease progression (Lénnroth et al [2009]). These
determinants are heterogeneous in space and time and cannot be easily collapsed into a
single “effective contact rate” without losing critical structure. Models struggle to represent
such biosocial complexity, and sensitivity analyses repeatedly show that predictions are
highly dependent on poorly constrained social and programmatic parameters (Dowdy et al
[2013], Melsew et al [2020]). Heterogeneity in infectiousness—where a minority of patients
may drive transmission in poorly ventilated, high-risk environments—further undermines
the assumption of homogeneous mixing that underlies most analytic frameworks (Kirschner
etal [2017]).

At the same time, TB epidemics unfold slowly. Intervention effects may take 5-20
years to become visible, limiting opportunities for rapid empirical validation of model
predictions. In contrast, HIV incidence responds more quickly to changes in prevention and
treatment, enabling iterative refinement of models and policy in near-real time. For TB, even
sophisticated multiscale and within-host models, though valuable for exploring latency and
treatment, have not yet yielded decisive shifts in global strategy.

In summary, mathematical models have been extraordinarily successful for HIV
because the infection is behaviorally mediated, biologically quantifiable and relatively fast-
moving. TB, by contrast, is slow, socially entangled and driven by latent, hard-to-measure
processes. As a result, TB models are most powerful as tools for scenario comparison and
resource planning, but they rarely achieve the explanatory or predictive depth seen in HIV
modeling.

Why Mathematical Modeling of Tuberculosis
Is Especially Critical for the Post-Soviet Space

The question of whether TB can be effectively modeled has long generated debate,
given the conceptual and empirical difficulties inherent in the disease. Yet despite these
limitations, mathematical modeling remains indispensable—particularly in the post-Soviet
space, where infectious, social, political, and data-quality factors converge to create an
urgent need for analytical tools capable of reconstructing and forecasting infectious
processes. In this context, the value of modeling lies not in perfect prediction but in enabling
rational inference under conditions of uncertainty, especially where traditional surveillance
systems are inadequate.

The first reason modeling is essential in the post-Soviet space is the exceptional
intensity of TB transmission observed across the region. Incidence rates in many former
Soviet republics exceed those of Western Europe by an order of magnitude. These
persistently elevated burdens stem from structural determinants—poverty, deteriorating
health systems, high rates of incarceration, widespread alcoholism, and the legacy of Soviet
institutional arrangements—that shape exposure, infection, and disease progression. High-
burden settings with long and complex epidemic histories cannot be adequately understood
through descriptive statistics alone. Mathematical models provide the means to analyze
how transmission dynamics unfold within such structurally unstable environments and to
identify the latent parameters driving epidemic persistence.
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A second reason is geopolitical. The post-Soviet region has been a generator of
recurrent conflicts and large-scale population displacements, with direct implications for
European public health. The ongoing war in Ukraine, which began in 2014 and continues
today, has produced millions of refugees moving from areas where TB incidence and MDR-
TB rates substantially exceed European averages. Migration flows from regions with a
significant infectious burden create a spatial linkage between the post-Soviet epidemic and
EU countries. Mathematical models are uniquely suited to evaluating how such population
movements may reshape transmission networks, alter age and risk structures, and impose
new pressures on health systems across borders. In this sense, modeling TB in the post-
Soviet region is not simply a regional concern but an instrument of European health
security.

A third factor necessitating modeling is the pervasive unreliability of TB surveillance
data across much of the post-Soviet space. Underreporting, inconsistent diagnostic criteria,
fragmentation of health information systems, and the continued influence of what may be
termed “Soviet epistemology” in disease classification all contribute to systematic
distortions in epidemiological indicators. The cultural legacy of the Soviet medical system—
where certain diseases, including TB, were ideologically stigmatized or administratively
manipulated—continues to shape data quality today. Under such conditions, mathematical
modeling provides a corrective framework: it enables the reconstruction of plausible
epidemic curves, estimation of true incidence, and identification of spatial heterogeneities
even when raw data are incomplete or biased.

One methodological strategy particularly applicable to this region is the “key-point
method,” widely used in geographical science. Here, well-studied territories serve as
reference “keys” for inferring dynamics in poorly documented regions. When calibrated
with high-quality local data from selected subpopulations—urban centers, prisons, migrant
communities—mathematical models can extrapolate broader patterns across the larger
post-Soviet landscape. Although imperfect, this approach yields insights that cannot be
obtained by conventional surveillance tools alone and provides decision-makers with the
best available estimates under constraints of uncertainty.

Mathematical modeling is further justified by the temporal depth of available
historical information. The Soviet and post-Soviet TB epidemic spans more than a century,
providing a large numerical basis for analysis. While interpretations of historical events
may vary, the volume of infectious, demographic, and archival material is substantial.
Learning to structure, parameterize, and critically interpret these data requires formal
quantitative frameworks that can link historical processes to contemporary patterns.

Finally, modeling is becoming more powerful due to recent theoretical advances,
such as the morphological concept of epidemics developed by Professor Dmitry Nikolaenko
(Nikolaenko et al [2009], Nikolaenko [2009], Nikolaenko [2010], Nikolaenko [2011],
Nikolaenko et al [2011]). This framework conceptualizes TB and HIV/AIDS epidemics as
diffusion processes characterized by identifiable spatial-temporal morphologies.
Incorporating these ideas into mathematical models allows for more accurate
representation of epidemic propagation fronts, local amplifiers of transmission, and
structural constraints inherent to the post-Soviet context. Diffusion-based approaches
permit systematic exploration of alternative epidemic trajectories, enabling researchers to
investigate how environmental, political, and social shocks modulate transmission
dynamics.

In sum, mathematical modeling in the Soviet and post-Soviet TB context plays a
necessarily auxiliary but indispensable role. Researchers are acutely aware of the
imperfections of available data, yet abstaining from modeling is not a viable alternative.
Models provide the only coherent framework through which heterogeneous historical
information, uncertain surveillance data, and complex socio-political processes can be
integrated into an interpretable and actionable understanding of TB dynamics. Even if
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models cannot fully overcome the limitations of the underlying data, they offer structured
reasoning where none would otherwise be possible.

THE DUAL-POPULATION EPIDEMIOLOGICAL MODEL

Why tuberculosis in the USSR requires a dual-population model

Standard epidemiological models assume uniform surveillance, uniform policy response,
and symmetric visibility across all segments of society. In the Soviet Union, none of these
conditions held. Two populations existed simultaneously:

1. Civilian population

e monitored,

e counted,

¢ studied,

e publicly discussed,

e used to measure success of the socialist healthcare project.

2. Prison population

e unmonitored,

e uncounted,

e scientifically inaccessible,

e ideologically inconvenient,

e excluded from official statistics.

Yet these two populations were infectious coupled through:

e arrest flow: civilians — prisons
e release flow: prisons — civilians
e family visits, informal contacts, prison guards

Thus, prisons acted as infectious sources, while civilians acted as infectious sinks. Itis a type
of "fireplace" that maintains a continuous flame. The Soviet state has consistently
maintained a controlled environment for the cultivation of tuberculosis and various other
infectious diseases.

Central asymmetries

Epidemiological factor Civilian population Prison population
Crowding Low/Moderate Extreme
Nutrition Moderate Poor
Medical access Good Minimal
Treatment continuity High Rare
Surveillance Present Absent
TB intensity Medium Very High
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Visibility Full Zero
Policy responsiveness Medium Near Zero
Treatment Compulsory, forced Refusal of treatment

Deliberately exposing oneself | Entirely unprecedented | This is a standard
to tuberculosis procedure

This asymmetry forces the model to treat the penal subsystem as a structurally different
compartment, not a small correction.

Transmission flows
1. Flow from civilians into prisons

Healthy civilians can acquire TB in prison. Infected civilians can become infectious faster
due to deprivation.

This is the term:

1E, E, ; .
2 —rE,(1-22)+aE.-6,E, — a,(1 — B)E,
dt Cyp

Formula 1.
2. Flow from prisons back to civilians
Released prisoners often carry:
e untreated TB
e partially treated TB
e MDR-TB

e latent infections

This appears as:

1E. s
95 ev.B. (1 cEf‘.) t rE, — 6.E. — a.(1 — B)E,
Formula 2.

Political asymmetry embedded in the model
Political visibility affects epidemiology.

o C(ivilian TB triggers policy responses.
e Prison TB triggers political denial.

Thus, political structure alters the dynamics:

Totalitarian fragmentation reduces the effective strength of health policy
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dP, .
Tf’ = [)11:1\]1 - [)'_’/)Ij[)p

Formula 6

1P, :
((T = 1)14'[\(' . 1).)1[}1):

Formula 7

Totalitarian fragmentation inhibits knowledge formation

dK, ’ » ;
Tt, =s,(1—0B)E, —d, K,
Formula 4

IK, : ;
L o (i —nBYBE —d.K.

dt
Formula 5

Totalitarian fragmentation grows when epidemics worsen

1B
((T = LB+ hE e u=yB

Formula 3

This makes the penal epidemic self-reinforcing.
Emergence of the pathological equilibrium
If:

e penal TBis high,

e totalitarian fragmentation increases,

e knowledge declines,

e policy collapses,

e reinfection flows persist,

then the system converges to:

e highE},
e moderate E;,
e high B*,

e persistent reinfection.
This is the historical Soviet pattern.
MATHEMATICAL FORMULATION

This section formalizes all mechanisms introduced above. We present the full dynamic
system:

e two epidemic compartments,

e two knowledge compartments,
e two policy compartments,

e one blindness variable.
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Then we reduce the system for analytical tractability.
Full epidemic system

1. Prison TB equation

dE,

dt Cp

Formula 1
This includes:
e logistic growth
e civilian inflow
e natural removal

e policy removal scaled by visibility (1-B)

2. Civilian TB equation

Formula 2

This includes:

¢ logistic growth

e reinfection from prisons

e civilian policy effort scaled by visibility
Totalitarian fragmentation dynamics
Totalitarian fragmentation increases when:

e prison epidemic increases,

¢ civilian epidemic increases,

¢ ideological pressure increases.
Totalitarian fragmentation decreases through:

e knowledge accumulation,

e information leakage,
e elite turnover.

adB

— =B+ MNE. +pu—9B

dt
Formula 3

Knowledge dynamics

Prison knowledge
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D F:l ~ ;
—2 =r,E, (1 - ’) +aE, — 6,E, — a,(1 — B)E,

1E, E. <
2% = 1.E. (1 : ) trE, — 6.E. — a.(1 — B)E,



Pollution and Diseases.2025; 1: 91-118

dK, ; ; .
Tr’ = s,(1 —oB)E, — d,K,
Formula 4
Civilian knowledge
1K, ; .
e s (i—=wB)E —d.K.
dt

Formula 5
Totalitarian fragmentation suppresses knowledge by coefficients o and «.
Policy dynamics

Prison policy

dpP, .
Tf’ = ])]1,1\1, — [)-_)I,I}I)I,
Formula 6.
Civilian policy
1P.
£ = ])],.[\’(. — llgr.l,;]‘),.
dt

Formula 7.
Totalitarian fragmentation weakens policy directly.
Reduced model
For formal analysis, we reduce the system:
e combine knowledge + policy into effective removal rates,

e maintain totalitarian fragmentation as explicit variable,
e keep dual epidemic structure.

dE, E, ;
(“1 =r,E, < - (—,'> +aFE. — (6, + a,(1 — B))E,

r

Formula 8.
1E., A s
(7;;’ =B, (1 f) +rE, — (8. + a,(1 — B))E,
Formula 9.
dB ; :
= MpEp+AE.+pn—+B

Formula 10.
This reduced 3-variable system is sufficient to capture:
e epidemic persistence

e totalitarian fragmentation threshold
e pathological equilibrium
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e hysteresis
Jacobian analysis

The Jacobian matrix of the reduced epidemic subsystem is:

_ frp=10, —ay(1—B) a
](B) T < r 'l'(. o (5(‘ . (1{.(1 . B)

Formula 11.
From this, we derive:

o Trace(]): » Tr(J) =7p =0 — (1 = B) + 7. — 6. —a.(l = B) Formula 12.
e Det()): ~ det(J) = (rp — 0, — (1 = B)) (re = 6. — a.(1 — B)) —ar Formula 13.

The dominant eigenvalue:

Amae(B) =) . \/ (Tr.()" ))' _ det(J)

Formula 14.
is crucial for stability.
Blindness threshold
The totalitarian fragmentation threshold is defined by:

/\m;\:\'(Bcril) =0
Formula 15.

If:

¢ Amax(Berit) < 0 — epidemic dies out
¢ Amax(Berit) > 0 — epidemic persists

Stability conditions:

/\m:\x(B) <0
Formula 16.

/\mux(B) > (]
Formula 17.

Equilibrium structure

Totalitarian fragmentation at equilibrium:

B — /\,,E; +AE:+ 1

J

Formula‘18.
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Epidemic equilibrium conditions:

*

E
0= ryB; (122 ) + a2 = Gy oyt = BNE;
g

Formula 19.

E; :
0=r.E} (l - E:) trE) — (6. + ac(l — BY))E;

Formula 20.
The penal equilibrium must satisfy:
e E;,>0
¢ reinfection from prisons remains active
e totalitarian fragmentation stays high

The reinfection loop:

Ee— By —3 B,
Formula 21.

prevents collapse of the epidemic.
FORMAL PROPERTIES OF THE SYSTEM
1. Positivity and invariance
- E,(0), E.(0), B(0) >0 = E,(t), E.t), B(t) > ()] Formula 22

through

1
8B B A Eans0
[ 4t |B=o ] Formula 25

show that:

e the system remains biologically meaningful,
e variables never become negative.

2. Existence of equilibria

Using Brouwer:

E,
F(E, E.,B)= | E.
B

F(082,;) points inward

103



Pollution and Diseases.2025; 1: 91-118

3(E;, EZ, B) € W : F(E;, B, BY) =0
Formula 26-28.

there must exist at least one equilibrium in the positive orthant.
3. Stability of the disease-free equilibrium
The system is disease-free only when:

e totalitarian fragmentation is low,
e removal rates exceed transmission rates.

Linearization:

DF(E;,E:,B")x = J(B*)z
Formula 29.

Y(A) = A2 = Tr(J) A + det(J)
Formula 30.

Stability criterion:

Tr(J) <0,  det(J) >0
Formula 31.

4. Totalitarian fragmentation threshold
The critical totalitarian fragmentation value:

/\m:\x(B(‘rit) =0
Formula 32.

marks the transition from:
e controlled epidemics
- to

e persistent epidemics.

5. Conditions for pathological equilibrium

If:

. /1p large,

e ysmall,

e @, small,

e reinfection flows strong,
then:
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B' > B('l‘i'
Formula 33.

and the system enters a stable endemic equilibrium:

(E;,E:,B")€Q, E;>0, E:>0
Formula 35.

Stability inequality:

Amax(B*) >0 == endemic equilibrium stable
Formula 36.

Thus the Soviet TB regime is mathematically predictable.
APPENDIX A: FORMAL PROOFS AND MATHEMATICAL FOUNDATIONS

This appendix provides the formal mathematical treatment of the dual-population model
with totalitarian blindness. We work with the reduced 3-equation system introduced in the
main text:

dE, E, :
(H’ =ae . <1 - i) + aE. — (0, + a,(1 — B))E,

Formula 8.

iE, . "
15; =, (1 = (E> +1E, — (5 + (1 — B))E,

¢

Formula 9.

dB : :
= =ApEp + A E.+p—vB

Formula 10.

These are reproduced below for readability:

e Prison epidemic equation

¢ C(ivilian epidemic equation

e Totalitarian fragmentation dynamics equation
Definitions and notation follow the main article.
A.1. Positivity and Forward Invariance
Theorem A.1 (Positivity).

If

E,(0) = 0,E.(0) = 0,B(0) > 0,

then
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E,(t), Ec(t), B(t) = OVt > 0.

Proof.
1. Atthe boundary E,, = 0:

a,

dt |Ep=0= aEC > O,

which implies trajectories cannot cross into £, < 0.

dr,

=aF. >0
dt A=

Ep=0
Formula 23.

2. Atthe boundary E,. = 0:

dE,

dt |EC=0= TEp 2 0

Formula 24.

3. Atthe boundary B = 0:

dB
T lp=0= ApEp + AcE. + > 0.
Formula 25.

Thus the vector field always points inward on the boundary of the positive orthant.
Therefore the domain

O = {(E, E., B) | Ep, E., B > 0}

is forward-invariant. m
A.2. Existence of Equilibria

We rewrite the reduced system compactly as:

E,
F(E,,E.,B) = | E.
B

Formula 26.

Let Q be a sufficiently large closed box in R3. The vector field satisfies:
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F(082,;) points inward
Formula 27.

Theorem A.2.
The system possesses at least one equilibrium in (.
Proof.
e The vector field is continuous in ().
e Logistic saturation ensures boundedness.
e Totalitarian fragmentation dynamics contain a linear decay term —yB.
e The vector field points inward on 9Q.

By Brouwer’s Fixed Point Theorem:

I(E;, E:,B*) € Oy : F(EL,E:,BY) =0
Formula 28.

Thus an equilibrium exists. m
A.3. Characterization of the Disease-Free Equilibrium

The disease-free equilibrium is:

u
(Ey E.,B) = (0, 0, >

Linearizing the epidemic subsystem gives the Jacobian:

3 I 5 (sp = (lp(l - B) g
J(B) = ( r PO~ —B)
Formula 11.

Associated objects:

e Trace()): » Te(J)=r, =6, —ap(l = B) + 1. — 0. — (1 = B) Formula 12.
° Det(]): — det(J) = (r, — 0, — a,(1 = B)) (ro — 6. — a.(1 — B)) — ar Formula 13.

The dominant eigenvalue:

’\m;«xx(lg) s Tr‘(),]) + \/ <Tl()]) ) ) == (1(,“ (—])

Formula 14.
governs stability.

Theorem A.3.
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The disease-free equilibrium is locally asymptotically stable if and only if:

/\m:\x(B) < (]
Formula 16.

and unstable if:

/\m:\x(B) >0
Formula 17.

Proof.
e The linearized system has characteristic polynomial:

Y(A) = A% = Tr(J) A + det(J)
Formula 30.

e The equilibrium is stable if both eigenvalues have negative real parts.
¢ This requires:

Tr(J) < 0. det(J) =0
Formula 31.

But since parameters enter monotonically through totalitarian fragmentation, the sign
of Anax(B) alone determines stability (Perron-Frobenius).

Thus the stated conditions follow. m
A.4. Totalitarian fragmentation Threshold
Define the totalitarian fragmentation threshold B; by:

/\111;\X(B('1‘it) =0
Formula 15.

Proposition A.4.

The disease-free equilibrium is stable for B < B,,j; and unstable for B > Bt

Proof.
o Eigenvalues of a cooperative matrix increase in response to increases in its entries.
¢ Increasing B reduces effective removal rates.
e This increases the diagonal of J(B), which increases the spectral radius.

e By continuity of the dominant eigenvalue, the equation:

/\111:\:\'(B('rit) =0
Formula 32.

has a unique solution. m
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A.5. Existence of a Pathological Endemic Equilibrium
We show that high totalitarian fragmentation forces the system into a persistent epidemic.
Theorem A.5 (Existence of pathological equilibrium).
Assume:
e 1, large (prison epidemic strongly increases totalitarian fragmentation),
e y small (totalitarian fragmentation decays slowly),
e a, small (prison policy weak),

e aand r strictly positive (bidirectional flows).

Then the system admits an equilibrium:

(E,E5,B)€Q, E,>0,E >0

Formula 35.
with:
B‘ > crit
Formula 33.
(i.e., totalitarian fragmentation at equilibrium exceeds the critical threshold).
Proof.

1. If B* > Bt the disease-free equilibrium is unstable.

2. By A.2, atleast one equilibrium exists.

3. Since the disease-free equilibrium is unstable, the remaining equilibrium must
satisfy:

e E;>0

e E;>0

4. Totalitarian fragmentation equilibrium condition:

MNES +AE; +

J

B*=

Formula 18.
Since A, dominates, small E_p produces large B*.
5. Therefore B*>B_crit.
Thus a positive endemic equilibrium necessarily exists. m
A.6. Stability of the Pathological Equilibrium

Theorem A.6.
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The pathological equilibrium described above is locally asymptotically stable.

Proof (sketch).
e For large totalitarian fragmentation, policy terms collapse, producing nearly
unregulated epidemic growth.
e Logistic terms prevent divergence.
o Totalitarian fragmentation grows with epidemic intensity, reinforcing high B.
e Thus eigenvalues at the equilibrium satisfy:

Amax(B*) >0 == endemic equilibrium stable
Formula 36.

Hence the equilibrium is stable. m
A.7. Hysteresis and Non-Ergodicity
Theorem A.7 (Hysteresis).
If
B(to) > Berit,
then even if B is later reduced to near Bcrit, epidemic levels E}, and E, may not return to
Zero.
Proof.

¢ High B induces high E.
¢ High E regenerates high B through:

dB . :
5 = ApEp + A E.+p—vB

Formula 10.

e The system enters a loop:

B(ty) > Bair = E,(t),E.(t) /0
Formula 34.

Thus, the system is path-dependent, not ergodic.

Simply reducing totalitarian fragmentation is insufficient once the epidemic reservoir has
been formed. m

A.8. Summary

Appendix A proves that:

1. The system remains in the biologically meaningful space.
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2. An equilibrium always exists.

Stability of the disease-free equilibrium is controlled by totalitarian fragmentation.
4. Above the totalitarian fragmentation threshold, the system converges to a
pathological equilibrium.

This equilibrium is stable, persistent, and self-reinforcing.

6. Hysteresis explains the post-Soviet TB and MDR-TB explosion.

w

“

Conclusions

Mathematical modeling of infectious processes in tuberculosis serves a function that is
not limited to strict scientific explanation, and even less to the precise forecasting of the
epidemic process. Its primary role lies in the correction and reconstruction of existing
data arrays. These datasets are persistently problematic, and mathematical modeling
provides one of the few mechanisms through which at least part of these deficiencies
can be addressed.

Depending on the socio-cultural environment and the specific characteristics of a given
state, the functions of mathematical modeling related to tuberculosis infectious
processes will differ substantially. The quality of epidemiological data varies
dramatically across the world. There is, and cannot be, any universal framework
applicable to all contexts.

Introducing a theoretical framework for this dual system of tuberculosis control—one
involving A. the cultivation of tuberculosis and B. the heroic fight against tuberculosis—
provides substantial benefits for mathematical modeling of the infectious process. It
allows for the development of far more realistic representations of what has transpired
over more than a century across the Russian Empire, the USSR, and the post-Soviet
states.

In mathematical modeling of the tuberculosis infectious process, and in the many
failures associated with it, an exceptionally important role is played by the initial
conceptualization of what tuberculosis is and how the infectious process develops. It
can be stated that the theoretical foundations of tuberculosis epidemiology are
fundamentally flawed. The issue lies not only— and perhaps not even primarily— in the
poor quality of empirical baseline data. The deeper problem is that the dominant
understanding of the epidemic is shaped almost exclusively by the perspective of
phthisiatricians, whose conceptual framework captures only a limited segment of the
infectious process. These dominant representations categorically fail to reflect reality.
This may be one of the principal reasons for the persistent failures in mathematical
modeling of the tuberculosis epidemic.

Our approach is based on the morphological concept of the HIV/AIDS and tuberculosis
pandemic developed by Dmitry Nikolaenko. This concept was first articulated around
2005. It draws not only on medical knowledge about infectious diseases, but—
fundamentally— on spatio-temporal analysis and long-term trends in the structural
transformation of population morbidity. The terms “morphology of the spatio-temporal
process” and “diffusion process” are critically important here. This constitutes a
fundamentally new explanatory approach. As a result, mathematical modeling is
grounded in a far more coherent foundation than the traditional phthisiatric
perspective and the endless references to poverty, alcoholism, and other reductive
explanatory tropes.

Recognizing that the problem lies not only in low-quality data but also in the inadequacy
of the theoretical framework underpinning the understanding of the infectious process
is highly significant. Specialists in mathematical modeling often suffer from criticism by
physicians and from their categorical prescriptions. Modelers are treated merely as
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“assistants”— at least this has been the case in Ukraine. Throughout our work, the staff
of the Laboratory for Geomonitoring and Forecasting of Epidemic Processes were
repeatedly told that “your role is to help us.” No criticism and no theory were welcome.
Thus, the failure of tuberculosis modeling is largely attributable to the conservatism of
the phthisiatric community and its unwillingness to hear well-founded critique or
accept theoretical extensions. Mathematical modeling of this infectious process is not a
“practical aid” to phthisiatry. It is an attempt to explain the unfolding infectious process
from a new scientific perspective.

7. It is essential that work on mathematical modeling of the infectious process remain
independent from the phthisiatric expert community. A long experience of attempted
collaboration demonstrated that genuine cooperation does not materialize. Numerous
constraints are imposed on theoretical analysis and modeling. Modeling is viewed solely
as an auxiliary tool for practical phthisiatric work. Nothing else is considered necessary
by physicians. However, phthisiatrists are not the only experts concerned with this
diffusion process.
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